SIAM Student Chapter Seminar: Difference between revisions

From UW-Math Wiki
Jump to navigation Jump to search
(→‎Spring 2024: update location for March 8 seminar)
 
(47 intermediate revisions by 5 users not shown)
Line 1: Line 1:
__NOTOC__
__NOTOC__


*'''When:''' Fridays at 1 PM unless noted otherwise
*'''When:''' Fridays at 1:30 PM unless noted otherwise
*'''Where:''' 9th floor lounge (we will also broadcast the virtual talks on the 9th floor lounge with refreshments)
*'''Where:''' 9th floor lounge (we will also broadcast the virtual talks on the 9th floor lounge with refreshments)
*'''Organizers:''' Yahui Qu, Peiyi Chen, Shi Chen and Zaidan Wu
*'''Organizers:''' Yahui Qu, Peiyi Chen and Zaidan Wu
*'''Faculty advisers:''' [http://www.math.wisc.edu/~jeanluc/ Jean-Luc Thiffeault], [http://pages.cs.wisc.edu/~swright/ Steve Wright]  
*'''Faculty advisers:''' [http://www.math.wisc.edu/~jeanluc/ Jean-Luc Thiffeault], [http://pages.cs.wisc.edu/~swright/ Steve Wright]  
*'''To join the SIAM Chapter mailing list:''' email [mailto:siam-chapter+join@g-groups.wisc.edu siam-chapter+join@g-groups.wisc.edu].
*'''To join the SIAM Chapter mailing list:''' email [mailto:siam-chapter+join@g-groups.wisc.edu siam-chapter+join@g-groups.wisc.edu].
Line 9: Line 9:
*'''Passcode:  281031'''
*'''Passcode:  281031'''


== Spring 2024 ==
== Spring 2025 ==


{| class="wikitable"
{| class="wikitable"
|+
|+
!Date
|Date
!Location
|Location
!Speaker
|Speaker
!Title
|Title
|-
|-
|2/2
|03/07
|VV911
|9th floor
|Thomas Chandler (UW-Madison)
|Ang Li
|Fluid–body interactions in anisotropic fluids
|Applying for postdocs and different industry jobs ... at the
same time
|-
|-
|3/8
|04/04
|Ingraham 214
|9th floor
|Danyun He (Harvard)
|Borong Zhang
|Energy-positive soaring using transient turbulent fluctuations
|Stochastic Multigrid Minimization for Ptychographic Phase Retrieval
|-
|-
|3/15
|04/11
|
|903
|Xiaoyu Dong (UMich)
|Ian McPherson
|TBD
|Convergence Rates for Riemannian Proximal Bundle Methods
|-
|-
|3/22
|04/25
|
|903
|Mengjin Dong (UPenn)
|Weidong Ma
|TBD
|A topic in kernel based independence testing
|-
|4/5
|VV911
|Sixu Li (UW-Madison)
|TBD
|-
|4/12
|VV911&Zoom
|Anjali Nair (UChicago)
|TBD
|-
|4/19
|VV911
|Jingyi Li (UW-Madison)
|TBD
|-
|5/3
|
|Bella Finkel (UW-Madison)
|TBD
|}
|}


==Abstracts==
==Abstracts==
'''February 2, Thomas Chandler (UW-Madison):''' Fluid anisotropy, or direction-dependent response to deformation, can be observed in biofluids like mucus or, at a larger scale, self-aligning swarms of active bacteria. A model fluid used to investigate such environments is a nematic liquid crystal. In this talk, we will use complex variables to analytically solve for the interaction between bodies immersed in liquid crystalline environments. This approach allows for the solution of a wide range of problems, opening the door to studying the role of body geometry, liquid crystal anchoring conditions, and deformability. Shape-dependent forces between bodies, surface tractions, and analogues to classical results in fluid dynamics will also be discussed.


'''March 8, Danyun He (Harvard University):''' The ability of birds to soar in the atmosphere is a fascinating scientific problem. It relies on an interplay between the physical processes governing atmospheric flows, and the capacity of birds to process cues from their environment and learn complex navigational strategies. Previous models for soaring have primarily taken advantage of thermals of ascending hot air to gain energy. Yet, it remains unclear whether energy loss due to drag can be overcome by extracting work from transient turbulent fluctuations. In this talk, I will present a recent work that we look at the alternative scenario of a glider navigating in an idealized model of a turbulent fluid where no thermals are present. First, I will show the numerical simulations of gliders navigating in a kinematic model that captures the spatio-temporal correlations of atmospheric turbulence. Energy extraction is enabled by an adaptive algorithm based on Monte Carlo tree search that dynamically filters acquired information about the flow to plan future paths. Then, I will demonstrate that for realistic parameter choices, a glider can navigate to gain height and extract energy from flow. Glider paths reflect patterns of foraging, where exploration of the flow is interspersed with bouts of energy extraction through localized spirals. As such, this work broadens our understanding of soaring, and extends the range of scenarios where soaring is known to be possible.
'''March 7th, Ang Li (UW-Madison)''': I will share my experience with postdoc and industry job applications. This talk might be helpful for those who haven’t decided between academia and industry or are considering different paths within industry since I made my own decision quite late.
 
'''April 4th, Borong Zhang (UW-Madison)''': In this talk, we introduce a novel stochastic multigrid minimization method designed for ptychographic phase retrieval. By reformulating the inverse problem as the iterative minimization of a quadratic surrogate that majorizes the original objective function, our approach unifies a range of iterative algorithms, including first-order methods and the well-known Ptychographic Iterative Engine (PIE). By efficiently solving the surrogate problem using a multigrid method, our method delivers significant improvements in both convergence speed and reconstruction quality compared to conventional PIE techniques.
 
'''April 11th, Ian McPherson (Johns-Hopkins):''' Nonsmooth convex optimization is a classically studied regime with a plethora of different optimization algorithms being developed in order to solve them. Of these methods, proximal bundle methods have been created and used within the Euclidean setting for decades - attempting to mimic the dynamics of the proximal point method. While practitioners have enjoyed very robust convergence results with respect to choice of parameters, it was not until the late 2020s that we have had theoretical results giving non-asymptotic guarantees - recovering optimal convergence rates. Within the past few years, the first Riemannian Proximal Bundle Methods have been proposed, again lacking non-asymptotic guarantees. Within this talk, we discuss how we are able to both generalize proposed methods and lift the non-asymptotic rates to the Riemannian setting. Moreover, we will do so without access to exponential maps or parallel transports. In addition, to our knowledge these are the first theoretical guarantees for non-smooth geodesically convex optimization in the Riemannian setting, without access to either exponential maps and parallel transports. The work presented is joint work with Mateo Diaz and Benjamin Grimmer.
 
'''April 25th, Weidong Ma (Univeristy of Pennsylvania)''': Testing the independence of random vectors is a fundamental problem across many scientific disciplines. In this talk, I will first introduce several widely used methods for independence testing, including distance covariance (DC), the Hilbert-Schmidt Independence Criterion (HSIC), and their applications. Most of these methods lack tractable asymptotic distributions under the null hypothesis (i.e., independence), making their use rely on computationally intensive procedures such as permutation tests or bootstrap methods.
 
To address this, I will present our recent work aimed at reducing the computational cost of independence testing.  We propose a modified HSIC test, termed HSICskb, which incorporates a bandwidth adjustment where one kernel’s bandwidth shrinks to zero as the sample size grows. We establish a Gaussian approximation result for our test statistic, which allows us to compute the p-value efficiently.
 
To assess statistical efficiency, we also conduct a local power analysis of the standard bootstrap-based HSIC test—an independently interesting contribution—and compare it with our HSICskb test. Finally, I will demonstrate the application of our method to real data, exploring the relationship between age and personal traits.


==Past Semesters==
==Past Semesters==
*[[SIAM Fall 2023]]
*[[SIAM Seminar Fall 2024|Fall 2024]]
*[[SIAM Spring 2023]]
*[https://wiki.math.wisc.edu/index.php/SIAM_Spring_2024 Spring 2024]
*[[SIAM Fall 2023|Fall 2023]]
*[[SIAM Spring 2023|Spring 2023]]
*[[SIAM Seminar Fall 2022|Fall 2022]]
*[[SIAM Seminar Fall 2022|Fall 2022]]
*[[Spring 2022 SIAM|Spring 2022]]
*[[Spring 2022 SIAM|Spring 2022]]

Latest revision as of 04:41, 21 April 2025


Spring 2025

Date Location Speaker Title
03/07 9th floor Ang Li Applying for postdocs and different industry jobs ... at the

same time

04/04 9th floor Borong Zhang Stochastic Multigrid Minimization for Ptychographic Phase Retrieval
04/11 903 Ian McPherson Convergence Rates for Riemannian Proximal Bundle Methods
04/25 903 Weidong Ma A topic in kernel based independence testing


Abstracts

March 7th, Ang Li (UW-Madison): I will share my experience with postdoc and industry job applications. This talk might be helpful for those who haven’t decided between academia and industry or are considering different paths within industry since I made my own decision quite late.

April 4th, Borong Zhang (UW-Madison): In this talk, we introduce a novel stochastic multigrid minimization method designed for ptychographic phase retrieval. By reformulating the inverse problem as the iterative minimization of a quadratic surrogate that majorizes the original objective function, our approach unifies a range of iterative algorithms, including first-order methods and the well-known Ptychographic Iterative Engine (PIE). By efficiently solving the surrogate problem using a multigrid method, our method delivers significant improvements in both convergence speed and reconstruction quality compared to conventional PIE techniques.

April 11th, Ian McPherson (Johns-Hopkins): Nonsmooth convex optimization is a classically studied regime with a plethora of different optimization algorithms being developed in order to solve them. Of these methods, proximal bundle methods have been created and used within the Euclidean setting for decades - attempting to mimic the dynamics of the proximal point method. While practitioners have enjoyed very robust convergence results with respect to choice of parameters, it was not until the late 2020s that we have had theoretical results giving non-asymptotic guarantees - recovering optimal convergence rates. Within the past few years, the first Riemannian Proximal Bundle Methods have been proposed, again lacking non-asymptotic guarantees. Within this talk, we discuss how we are able to both generalize proposed methods and lift the non-asymptotic rates to the Riemannian setting. Moreover, we will do so without access to exponential maps or parallel transports. In addition, to our knowledge these are the first theoretical guarantees for non-smooth geodesically convex optimization in the Riemannian setting, without access to either exponential maps and parallel transports. The work presented is joint work with Mateo Diaz and Benjamin Grimmer.

April 25th, Weidong Ma (Univeristy of Pennsylvania): Testing the independence of random vectors is a fundamental problem across many scientific disciplines. In this talk, I will first introduce several widely used methods for independence testing, including distance covariance (DC), the Hilbert-Schmidt Independence Criterion (HSIC), and their applications. Most of these methods lack tractable asymptotic distributions under the null hypothesis (i.e., independence), making their use rely on computationally intensive procedures such as permutation tests or bootstrap methods.

To address this, I will present our recent work aimed at reducing the computational cost of independence testing. We propose a modified HSIC test, termed HSICskb, which incorporates a bandwidth adjustment where one kernel’s bandwidth shrinks to zero as the sample size grows. We establish a Gaussian approximation result for our test statistic, which allows us to compute the p-value efficiently.

To assess statistical efficiency, we also conduct a local power analysis of the standard bootstrap-based HSIC test—an independently interesting contribution—and compare it with our HSICskb test. Finally, I will demonstrate the application of our method to real data, exploring the relationship between age and personal traits.

Past Semesters