NTS ABSTRACT: Difference between revisions

From UW-Math Wiki
Jump to navigation Jump to search
No edit summary
 
(23 intermediate revisions by 2 users not shown)
Line 20: Line 20:




== Sept 21 ==
== Sept 14 ==


<center>
<center>
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"
|-
|-
| bgcolor="#F0A0A0" align="center" style="font-size:125%" | '''Chao Li '''
| bgcolor="#F0A0A0" align="center" style="font-size:125%" | '''Solly Parenti'''
|-
|-
| bgcolor="#BCD2EE"  align="center" | Goldfeld's conjecture and congruences between Heegner points
| bgcolor="#BCD2EE"  align="center" | Unitary CM Fields and the Colmez Conjecture
|-
|-
| bgcolor="#BCD2EE"  | Given an elliptic curve E over Q, a celebrated conjecture of Goldfeld asserts that a positive proportion of its quadratic twists should have analytic rank 0 (resp. 1). We show this conjecture holds whenever E has a rational 3-isogeny. We also prove the analogous result for the sextic twists of j-invariant 0 curves. For a more general elliptic curve E, we show that the number of quadratic twists of E up to twisting discriminant X of analytic rank 0 (resp. 1) is  >> X/log^{5/6}X, improving the current best general bound towards Goldfeld's conjecture due to Ono--Skinner (resp. Perelli--Pomykala). We prove these results by establishing a congruence formula between p-adic logarithms of Heegner points based on Coleman's integration. This is joint work with Daniel Kriz.
| bgcolor="#BCD2EE"  | Pierre Colmez conjectured a formula for the Faltings height of a CM abelian variety in terms of log derivatives of Artin L-functions arising from the CM type. We will study the relevant class functions in the case where our CM field contains an imaginary quadratic field and use this to extend the known cases of the conjecture.
 
|}                                                                         
|}                                                                         
</center>
</center>
Line 36: Line 35:
<br>
<br>


== Jan 26 ==
== Sept 21 ==


<center>
<center>
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"
|-
|-
| bgcolor="#F0A0A0" align="center" style="font-size:125%" |'''Jordan Ellenberg'''
| bgcolor="#F0A0A0" align="center" style="font-size:125%" | '''Chao Li '''
|-
|-
| bgcolor="#BCD2EE"  align="center" | Upper bounds for Malle's conjecture over function fields
| bgcolor="#BCD2EE"  align="center" | Goldfeld's conjecture and congruences between Heegner points
|-
|-
| bgcolor="#BCD2EE"  | I will talk about this paper
| bgcolor="#BCD2EE"  | Given an elliptic curve E over Q, a celebrated conjecture of Goldfeld asserts that a positive proportion of its quadratic twists should have analytic rank 0 (resp. 1). We show this conjecture holds whenever E has a rational 3-isogeny. We also prove the analogous result for the sextic twists of j-invariant 0 curves. For a more general elliptic curve E, we show that the number of quadratic twists of E up to twisting discriminant X of analytic rank 0 (resp. 1) is  >> X/log^{5/6}X, improving the current best general bound towards Goldfeld's conjecture due to Ono--Skinner (resp. Perelli--Pomykala). We prove these results by establishing a congruence formula between p-adic logarithms of Heegner points based on Coleman's integration. This is joint work with Daniel Kriz.
 
https://arxiv.org/abs/1701.04541
 
joint with Craig Westerland and TriThang Tran, which proves an upper bound, originally conjectured by Malle, for the number of G-extensions of F_q(t) of bounded discriminant.
 


|}                                                                         
|}                                                                         
</center>
</center>
 
== Sept 28 ==
<br>
 
== Feb 2 ==


<center>
<center>
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"
|-
|-
| bgcolor="#F0A0A0" align="center" style="font-size:125%" | '''Arul Shankar'''
| bgcolor="#F0A0A0" align="center" style="font-size:125%" | '''Daniel Hast '''
|-
|-
| bgcolor="#BCD2EE"  align="center" | Bounds on the 2-torsion in the class groups of number fields
| bgcolor="#BCD2EE"  align="center" | Rational points on solvable curves over Q via non-abelian Chabauty
|-
|-
| bgcolor="#BCD2EE"  | (Joint with M. Bhargava, T. Taniguchi, F. Thorne, J. Tsimerman, Y. Zhao)
| bgcolor="#BCD2EE"  | By Faltings' theorem, any curve over Q of genus at least two has only finitely many rational points—but the bounds coming from known proofs of Faltings' theorem are often far from optimal. Chabauty's method gives much sharper bounds for curves whose Jacobian has low rank, and can even be refined to give uniform bounds on the number of rational points. This talk is concerned with Minhyong Kim's non-abelian analogue of Chabauty's method, which uses the unipotent fundamental group of the curve to remove the restriction on the rank. Kim's method relies on a "dimension hypothesis" that has only been proven unconditionally for certain classes of curves; I will give an overview of this method and discuss my recent work with Jordan Ellenberg where we prove this dimension hypothesis for any Galois cover of the projective line with solvable Galois group (which includes, for example, any hyperelliptic curve).


Given a number field K of fixed degree n over Q, a classical theorem of Brauer--Siegel asserts that the size of the class group of K is bounded by O_\epsilon(|Disc(K)|^(1/2+\epsilon). For any prime p, it is conjectured that the p-torsion
subgroup of the class group of K is bounded by O_\epsilon(|Disc(K)|^\epsilon. Only the case n=p=2 of this conjecture in known. In fact, for most pairs (n,p), the best known bounds come from the "convex" Brauer--Siegel bound.
In this talk, we will discuss a proof of a subconvex bound on the size of the 2-torsion in the class groups of number fields, for all degrees n. We will also discuss an application of this result towards improved bounds on the number of integral points on elliptic curves.
|}                                                                         
|}                                                                         
</center>
</center>


<br>
== Oct 12 ==
 
== Feb 9 ==


<center>
<center>
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"
|-
|-
| bgcolor="#F0A0A0" align="center" style="font-size:125%" |'''Tonghai Yang'''
| bgcolor="#F0A0A0" align="center" style="font-size:125%" | '''Matija Kazalicki '''
|-
|-
| bgcolor="#BCD2EE"  align="center" | L-function aspect of the Colmez Conjecture
| bgcolor="#BCD2EE"  align="center" | Supersingular zeros of divisor polynomials of elliptic curves of prime conductor and Watkins' conjecture
|-
|-
| bgcolor="#BCD2EE"  | Associate to a CM type, Colmez defined two invariants: Faltings height of the associated CM abelian varieties of this CM type, and the log derivative of some mysterious Artin L-function nifonstructed from this CM type. Furthermore, he conjectured them to be equal and proved the conjecture for Abelian CM number fields (up to log 2).  The average version of the conjecture was proved recently by two groups of people which has significant implication to Andre-Oort conjecture. Some non-abelian cases were proved by myself and others.  In all proved cases, the L-function is either Dirichlet characters  or quadratic Hecke charactersA natural question is what kinds of Artin L-functions show up in this conjecture. In this talk, we will talk about some interesting examples in this. This is a joint work with Hongbo Yin.
| bgcolor="#BCD2EE"  | For a prime number p, we study the mod p zeros of divisor polynomials of elliptic curves E/Q of conductor p. Ono made the observation that these zeros of are often j-invariants of supersingular elliptic curves over F_p. We relate these supersingular zeros to the zeros of the quaternionic modular form associated to E, and using the later partially explain Ono's findingsWe notice the curious connection between the number of zeros and the rank of elliptic curve.
In the second part of the talk, we briefly explain how a special case of Watkins' conjecture on the parity of modular degrees of elliptic curves follows from the methods previously introduced.   This is a joint work with Daniel Kohen.


|}                                                            
|}                                                                      
</center>
</center>


<br>
== Oct 19 ==
 
== Feb 16 ==


<center>
<center>
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"
|-
|-
| bgcolor="#F0A0A0" align="center" style="font-size:125%" |'''Alexandra Florea'''
| bgcolor="#F0A0A0" align="center" style="font-size:125%" | '''Andrew Bridy'''
|-
|-
| bgcolor="#BCD2EE"  align="center" | Moments of L-functions over function fields
| bgcolor="#BCD2EE"  align="center" | Arboreal finite index for cubic polynomials
|-
|-
| bgcolor="#BCD2EE"  | I will talk about the moments of the family of quadratic Dirichlet L–functions over function fields. Fixing the finite field and letting the genus of the family go to infinity, I will explain how to obtain asymptotic formulas for the first four moments in the hyperelliptic ensemble.
| bgcolor="#BCD2EE"  | Let K be a global field of characteristic 0. Let f \in K[x] and b \in K, and set K_n = K(f^{-n}(b)). The projective limit of the groups Gal(K_n/K) embeds into the automorphism group of an infinite rooted tree. A major problem in arithmetic dynamics is to find conditions that guarantee the index is finite; a complete answer would give a dynamical analogue of Serre's celebrated open image theorem. I solve the finite index problem for cubic polynomials over function fields by proving a complete list of necessary and sufficient conditions. For number fields, the proof of sufficiency is conditional on both the abc conjecture and a form of Vojta's conjecture. This is joint work with Tom Tucker.


 
|}                                                                      
|}                                                                    
</center>
</center>
 
== Oct 19 ==
<br>
 
== Feb 23 ==


<center>
<center>
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"
|-
|-
| bgcolor="#F0A0A0" align="center" style="font-size:125%" |'''Dongxi Ye'''
| bgcolor="#F0A0A0" align="center" style="font-size:125%" | ''Jiuya Wang''
|-
|-
| bgcolor="#BCD2EE"  align="center" | Borcherds Products on Unitary Group U(2,1)
| bgcolor="#BCD2EE"  align="center" | Malle's conjecture for compositum of number fields
|-
|-
| bgcolor="#BCD2EE"  | In this talk, I will first briefly go over the concepts of Borcherds products on orthogonal groups and unitary groups. And then I will present a family of new explicit examples of Borcherds products on unitary group U(2,1), which arise from a canonical basis for the space of weakly holomorphic modular forms of weight $-1$ for $\Gamma_{0}(4)$. This talk is based on joint work with Professor Tonghai Yang.
| bgcolor="#BCD2EE"  | Abstract: Malle's conjecture is a conjecture on the asymptotic distribution of number fields with bounded discriminant. We propose a general framework to prove Malle's conjecture for compositum of number fields based on known examples of Malle's conjecture and good uniformity estimates. By this method, we prove Malle's conjecture for $S_n\times A$ number fields for $n = 3,4,5$ and $A$ in an infinite family of abelian groups. As a corollary, we show that Malle's conjecture is true for $C_3\wr C_2$ in its $S_9$ representation, whereas its $S_6$ representation is the first counter example of Malle's conjecture given by Kl\"uners. By a sieve method, we further prove the secondary term for $S_3\times A$ extensions for infinitely many odd abelian groups $A$ over $\mathbb{Q}$.
 
|}                                                                      
 
|}                                                                        
</center>
</center>


<br>
== Nov 2 ==
 
== Mar 2 ==


<center>
<center>
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"
|-
|-
| bgcolor="#F0A0A0" align="center" style="font-size:125%" | Frank Thorne
| bgcolor="#F0A0A0" align="center" style="font-size:125%" | '' Carl Wang-Erickson''
|-
|-
| bgcolor="#BCD2EE"  align="center" | Levels of distribution for prehomogeneous vector spaces
| bgcolor="#BCD2EE"  align="center" | The rank of the Eisenstein ideal
|-
|-
| bgcolor="#BCD2EE"  | One important technical ingredient in many arithmetic statistics papers is
| bgcolor="#BCD2EE"  | Abstract: In his landmark 1976 paper "Modular curves and the Eisenstein ideal", Mazur studied congruences modulo p between cusp forms and an Eisenstein series of weight 2 and prime level N. We use deformation theory of pseudorepresentations to study the corresponding Hecke algebra. We will discuss how this method can be used to refine Mazur's results, quantifying the number of Eisenstein congruences. Time permitting, we'll also discuss some partial results in the composite-level case. This is joint work with Preston Wake.  
upper bounds for finite exponential sums which arise as Fourier transforms
of characteristic functions of orbits. This is typical in results
obtaining power saving error terms, treating "local conditions", and/or
applying any sort of sieve.


In my talk I will explain what these exponential sums are, how they arise,
|}                                                                       
and what their relevance is. I will outline a new method for explicitly and easily
</center>
evaluating them, and describe some pleasant surprises in our end results. I will also
outline a new sieve method for efficiently exploiting these results, involving
Poisson summation and the Bhargava-Ekedahl geometric sieve. For example, we have proved
that there are "many" quartic field discriminants with at most eight
prime factors.


This is joint work with Takashi Taniguchi.




|}                                                                     
</center>


<br>


== Mar 9 ==


<center>
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"
|-
| bgcolor="#F0A0A0" align="center" style="font-size:125%" |'''Brad Rodgers'''
|-
| bgcolor="#BCD2EE"  align="center" | Sums in short intervals and decompositions of arithmetic functions
|-
| bgcolor="#BCD2EE"  | In this talk we will discuss some old and new conjectures about the behavior of sums of arithmetic functions in short intervals, along with analogues of these conjectures in a function field setting that have been proved in recent years. We will pay particular attention to some surprising phenomena that comes into play for the k-fold divisor function, and a decomposition of arithmetic functions in a function field setting that helps elucidate what's happening. I also hope to discuss the relation of these results to symmetric function theory and a connection to algebraic geometry in a recent paper of Hast and Matei.




|}                                                                     
</center>


<br>
== Nov 9 ==
 
== Mar 16 ==


<center>
<center>
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"
|-
|-
| bgcolor="#F0A0A0" align="center" style="font-size:125%" |
| bgcolor="#F0A0A0" align="center" style="font-size:125%" | ''Masahiro Nakahara''
|-
|-
| bgcolor="#BCD2EE"  align="center" |
| bgcolor="#BCD2EE"  align="center" | Index of fibrations and Brauer-Manin obstruction
|-
|-
| bgcolor="#BCD2EE"  |  
| bgcolor="#BCD2EE"  | Abstract: Let X be a smooth projective variety with a fibration into varieties that either satisfy a condition on representability of zero-cycles or that are torsors under an abelian variety. We study the classes in the Brauer group that never obstruct the Hasse principle for X. We prove that if the generic fiber has a zero-cycle of degree d over the generic point, then the Brauer classes whose orders are prime to d do not play a role in the Brauer--Manin obstruction. As a result we show that the odd torsion Brauer classes never obstruct the Hasse principle for del Pezzo surfaces of degree 2, certain K3 surfaces, and Kummer varieties.
 


|}                                                                         
|}                                                                         
</center>
</center>


<br>


== Mar 30 ==
 
== Nov 16 ==


<center>
<center>
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"
|-
|-
| bgcolor="#F0A0A0" align="center" style="font-size:125%" |'''Speaker'''
| bgcolor="#F0A0A0" align="center" style="font-size:125%" | ''Joseph Gunther''
|-
|-
| bgcolor="#BCD2EE"  align="center" | title
| bgcolor="#BCD2EE"  align="center" | Irrational points on random hyperelliptic curves
|-
|-
| bgcolor="#BCD2EE"  | abstract
| bgcolor="#BCD2EE"  | Abstract:Let d and g be positive integers with 1 < d < g.  If d is odd, we prove there exists B_d such that a positive proportion of odd genus g hyperelliptic curves over Q have at most B_d points of degree d.  If d is even, we similarly bound the degree d points not lazily pulled back from degree d/2 points of the projective line.  The proofs use tropical geometry work of Park, as well as results of Bhargava and Gross on average ranks of hyperelliptic Jacobians. This is joint work with Jackson Morrow.


Time willing, we'll discuss rich, delicious interactions with work of next week's speaker.


|}                                                                       
</center>


<br>


== Apr 6 ==
<center>
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"
|-
| bgcolor="#F0A0A0" align="center" style="font-size:125%" | '''Celine Maistret'''
|-
| bgcolor="#BCD2EE"  align="center" | Parity of ranks of abelian surfaces
|-
| bgcolor="#BCD2EE"  |  Let K be a number field and A/K an abelian surface (dimension 2 analogue of an elliptic curve). By the Mordell-Weil theorem, the group of K-rational points on A is finitely generated and as for elliptic curves, its rank is predicted by the  Birch and Swinnerton-Dyer conjecture. A basic consequence of this conjecture is the parity conjecture: the sign of the functional equation of the L-series determines the parity of the rank of A/K. Under suitable local constraints and finiteness of the Shafarevich-Tate group, we prove the parity conjecture for principally polarized abelian surfaces. We also prove analogous unconditional results for Selmer groups.
|}                                                                         
|}                                                                         
</center>
</center>


<br>


== Apr 13 ==
 
== Nov 30 ==


<center>
<center>
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"
|-
|-
| bgcolor="#F0A0A0" align="center" style="font-size:125%" | '''Eric Mortenson'''
| bgcolor="#F0A0A0" align="center" style="font-size:125%" | ''Reed Gordon-Sarney''
|-
|-
| bgcolor="#BCD2EE"  align="center" | Kronecker-type q-series identities and formulas for sums of squares and sums of triangular numbers
| bgcolor="#BCD2EE"  align="center" |Zero-Cycles on Torsors under Linear Algebraic Groups
|-
|-
| bgcolor="#BCD2EE"  | We recall Kronecker's identity and review how limiting cases give the representations of a number as a sum of four squares and the representations of a number as a sum of two squares.  The two formulas imply respectively Lagrange's theorem that every number can be written as a sum of four squares and Fermat's theorem that an odd prime can be written as the sum of two squares if and only if it is congruent to 1 modulo 4.  By considering a limiting case of a higher-dimensional Kronecker-type identity, we obtain an identity found by both Andrews and Crandall.  We then use the Andrews-Crandall identity to give a new proof of a formula of Gauss for the representations of a number as a sum of three squares. From the Kronecker-type identity, we also deduce Gauss's theorem that every positive integer is representable as a sum of three triangular numbers.
| bgcolor="#BCD2EE"  | Abstract:In this talk, the speaker will discuss his thesis on the following question of Totaro from 2004: if a torsor under a connected linear algebraic group has index d, does it have a close etale point of degree d? The d = 1 case is an open question of Serre from the `60s. The d > 1 case, surprisingly, has a negative answer.
 


|}                                                                         
|}                                                                         
</center>
</center>


<br>


== Apr 20 ==
== Dec 7 ==


<center>
<center>
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"
|-
|-
| bgcolor="#F0A0A0" align="center" style="font-size:125%" |'''Speaker'''
| bgcolor="#F0A0A0" align="center" style="font-size:125%" | ''Rafe Jones''
|-
|-
| bgcolor="#BCD2EE"  align="center" | title
| bgcolor="#BCD2EE"  align="center" |How do you (easily) find the genus of a plane curve?
|-
|-
| bgcolor="#BCD2EE"  | abstract
| bgcolor="#BCD2EE"  | Abstract: If you’ve ever wanted to show a plane curve has only finitely many rational points, you’ve probably wished you could invoke Faltings’ theorem, which requires the genus of the curve to be at least two. At that point, you probably asked yourself the question in the title of this talk. While the genus is computable for any given irreducible curve, it depends in a delicate way on the singular points. I’ll talk about a much nicer formula that applies to irreducible “variables separated” curves, that is, those given by A(x) = B(y) where A and B are rational functions.


Then I’ll discuss how to use this to resolve the question that motivated me originally: given an integer m > 1 and a rational function f defined over a number field K, does f possess a K-orbit containing infinitely many mth powers of elements of K?  The answer turns out to be no unless f has a very special form: for m > 4 the map f must essentially be the mth power of some rational function, while for smaller m other exceptions arise, including maps closely related to multiplication on elliptic curves. If time permits I’ll discuss a connection to an arithmetic dynamical analogue of the Mordell-Lang conjecture.


|} 
</center> 


<br>
|}                                                                      
 
== Apr 27 ==
 
<center>
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"
|-
| bgcolor="#F0A0A0" align="center" style="font-size:125%" |'''Yueke Hu'''
|-
| bgcolor="#BCD2EE"  align="center" |Mass equidistribution of cusp forms on torus in depth aspect
|-
| bgcolor="#BCD2EE"  |In this talk I will talk about mass equidistribution of cusp forms of level $p^{c}$ when restricted to geodesics or Heegner points as $c$ goes to infinity. A key ingredient is a discussion of the test vector for Waldspurger’s period integral, generalizing the Gross-Prasad test vector.
 
 
|}
                                                                   
</center>
</center>
<br>


== May 4 ==
== Dec 14 ==


<center>
<center>
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"
|-
|-
| bgcolor="#F0A0A0" align="center" style="font-size:125%" |'''Yiannis Sakellaridis'''
| bgcolor="#F0A0A0" align="center" style="font-size:125%" | ''Robert J. Lemke Oliver''
|-
|-
| bgcolor="#BCD2EE"  align="center" | Stacks, regularization of orbital integrals, and the relative trace formula
| bgcolor="#BCD2EE"  align="center" |Selmer groups, Tate-Shafarevich groups, and ranks of abelian varieties in quadratic twist families
|-
|-
| bgcolor="#BCD2EE"  | The relative trace formula of Jacquet is a putative generalization of the Arthur–Selberg trace formula, which is being used to establish functoriality and relations between periods of automorphic forms, as the trace formula is being used to establish functoriality and character relations. As of now, it has been developed only on a case-by-case basis, with methods that are similar but, to some extent, ad hoc. I will describe a general approach to the geometric side of the relative trace formula, which in many cases provides the correct answer. The approach has a local and a local component: Locally, one develops a notion of "Schwartz space of a quotient stack", the space of "test functions" for the relative trace formula where pure inner forms of the group naturally show up. Globally, and quite independently, one develops a theory of regularization of orbital integrals that is based on toric geometry. I will also explain why this purely geometric approach is not enough to produce an answer in some cases (such as the original Arthur–Selberg trace formula), and will give some hints on what might be done in those cases.
| bgcolor="#BCD2EE"  | Abstract: We determine the average size of the $\phi$-Selmer group in any quadratic twist family of abelian varieties having an isogeny $\phi$ of degree 3 over any number field.  This has several applications towardsthe rank statistics in such families of quadratic twists.  For example, it yields the first known quadratic twist families of absolutely simple abelian varieties over $\mathbb{Q}$, of dimension greater than one, for which the average rank is bounded; in fact, we obtain such twist families in arbitrarily large dimension.  In the case that $E/F$ is an elliptic curve admitting a 3-isogeny, we prove that the average rank of its quadratic twists is bounded; if $F$ is totally real, we moreover show that a positive proportion of these twists have rank 0 and a positive proportion have $3$-Selmer rank 1.  We also obtain consequences for Tate-Shafarevich groups of quadratic twists of a given elliptic curve. This is joint work with Manjul Bhargava, Zev Klagsbrun, and Ari Shnidman.


 
|}                                                                      
|}
                                                                   
</center>
</center>

Latest revision as of 05:44, 4 December 2017

Return to NTS Spring 2017


Sept 7

David Zureick-Brown
Progress on Mazur’s program B
I’ll discuss recent progress on Mazur’s ”Program B”, including my own recent work with Jeremy Rouse which completely classifies the possibilities for the 2-adic image of Galois associated to an elliptic curve over the rationals. I will also discuss a large number of other very recent results by many authors.



Sept 14

Solly Parenti
Unitary CM Fields and the Colmez Conjecture
Pierre Colmez conjectured a formula for the Faltings height of a CM abelian variety in terms of log derivatives of Artin L-functions arising from the CM type. We will study the relevant class functions in the case where our CM field contains an imaginary quadratic field and use this to extend the known cases of the conjecture.


Sept 21

Chao Li
Goldfeld's conjecture and congruences between Heegner points
Given an elliptic curve E over Q, a celebrated conjecture of Goldfeld asserts that a positive proportion of its quadratic twists should have analytic rank 0 (resp. 1). We show this conjecture holds whenever E has a rational 3-isogeny. We also prove the analogous result for the sextic twists of j-invariant 0 curves. For a more general elliptic curve E, we show that the number of quadratic twists of E up to twisting discriminant X of analytic rank 0 (resp. 1) is >> X/log^{5/6}X, improving the current best general bound towards Goldfeld's conjecture due to Ono--Skinner (resp. Perelli--Pomykala). We prove these results by establishing a congruence formula between p-adic logarithms of Heegner points based on Coleman's integration. This is joint work with Daniel Kriz.

Sept 28

Daniel Hast
Rational points on solvable curves over Q via non-abelian Chabauty
By Faltings' theorem, any curve over Q of genus at least two has only finitely many rational points—but the bounds coming from known proofs of Faltings' theorem are often far from optimal. Chabauty's method gives much sharper bounds for curves whose Jacobian has low rank, and can even be refined to give uniform bounds on the number of rational points. This talk is concerned with Minhyong Kim's non-abelian analogue of Chabauty's method, which uses the unipotent fundamental group of the curve to remove the restriction on the rank. Kim's method relies on a "dimension hypothesis" that has only been proven unconditionally for certain classes of curves; I will give an overview of this method and discuss my recent work with Jordan Ellenberg where we prove this dimension hypothesis for any Galois cover of the projective line with solvable Galois group (which includes, for example, any hyperelliptic curve).

Oct 12

Matija Kazalicki
Supersingular zeros of divisor polynomials of elliptic curves of prime conductor and Watkins' conjecture
For a prime number p, we study the mod p zeros of divisor polynomials of elliptic curves E/Q of conductor p. Ono made the observation that these zeros of are often j-invariants of supersingular elliptic curves over F_p. We relate these supersingular zeros to the zeros of the quaternionic modular form associated to E, and using the later partially explain Ono's findings. We notice the curious connection between the number of zeros and the rank of elliptic curve.

In the second part of the talk, we briefly explain how a special case of Watkins' conjecture on the parity of modular degrees of elliptic curves follows from the methods previously introduced. This is a joint work with Daniel Kohen.

Oct 19

Andrew Bridy
Arboreal finite index for cubic polynomials
Let K be a global field of characteristic 0. Let f \in K[x] and b \in K, and set K_n = K(f^{-n}(b)). The projective limit of the groups Gal(K_n/K) embeds into the automorphism group of an infinite rooted tree. A major problem in arithmetic dynamics is to find conditions that guarantee the index is finite; a complete answer would give a dynamical analogue of Serre's celebrated open image theorem. I solve the finite index problem for cubic polynomials over function fields by proving a complete list of necessary and sufficient conditions. For number fields, the proof of sufficiency is conditional on both the abc conjecture and a form of Vojta's conjecture. This is joint work with Tom Tucker.

Oct 19

Jiuya Wang
Malle's conjecture for compositum of number fields
Abstract: Malle's conjecture is a conjecture on the asymptotic distribution of number fields with bounded discriminant. We propose a general framework to prove Malle's conjecture for compositum of number fields based on known examples of Malle's conjecture and good uniformity estimates. By this method, we prove Malle's conjecture for $S_n\times A$ number fields for $n = 3,4,5$ and $A$ in an infinite family of abelian groups. As a corollary, we show that Malle's conjecture is true for $C_3\wr C_2$ in its $S_9$ representation, whereas its $S_6$ representation is the first counter example of Malle's conjecture given by Kl?\"uners. By a sieve method, we further prove the secondary term for $S_3\times A$ extensions for infinitely many odd abelian groups $A$ over $\mathbb{Q}$.

Nov 2

Carl Wang-Erickson
The rank of the Eisenstein ideal
Abstract: In his landmark 1976 paper "Modular curves and the Eisenstein ideal", Mazur studied congruences modulo p between cusp forms and an Eisenstein series of weight 2 and prime level N. We use deformation theory of pseudorepresentations to study the corresponding Hecke algebra. We will discuss how this method can be used to refine Mazur's results, quantifying the number of Eisenstein congruences. Time permitting, we'll also discuss some partial results in the composite-level case. This is joint work with Preston Wake.





Nov 9

Masahiro Nakahara
Index of fibrations and Brauer-Manin obstruction
Abstract: Let X be a smooth projective variety with a fibration into varieties that either satisfy a condition on representability of zero-cycles or that are torsors under an abelian variety. We study the classes in the Brauer group that never obstruct the Hasse principle for X. We prove that if the generic fiber has a zero-cycle of degree d over the generic point, then the Brauer classes whose orders are prime to d do not play a role in the Brauer--Manin obstruction. As a result we show that the odd torsion Brauer classes never obstruct the Hasse principle for del Pezzo surfaces of degree 2, certain K3 surfaces, and Kummer varieties.



Nov 16

Joseph Gunther
Irrational points on random hyperelliptic curves
Abstract:Let d and g be positive integers with 1 < d < g. If d is odd, we prove there exists B_d such that a positive proportion of odd genus g hyperelliptic curves over Q have at most B_d points of degree d. If d is even, we similarly bound the degree d points not lazily pulled back from degree d/2 points of the projective line. The proofs use tropical geometry work of Park, as well as results of Bhargava and Gross on average ranks of hyperelliptic Jacobians. This is joint work with Jackson Morrow.

Time willing, we'll discuss rich, delicious interactions with work of next week's speaker.



Nov 30

Reed Gordon-Sarney
Zero-Cycles on Torsors under Linear Algebraic Groups
Abstract:In this talk, the speaker will discuss his thesis on the following question of Totaro from 2004: if a torsor under a connected linear algebraic group has index d, does it have a close etale point of degree d? The d = 1 case is an open question of Serre from the `60s. The d > 1 case, surprisingly, has a negative answer.



Dec 7

Rafe Jones
How do you (easily) find the genus of a plane curve?
Abstract: If you’ve ever wanted to show a plane curve has only finitely many rational points, you’ve probably wished you could invoke Faltings’ theorem, which requires the genus of the curve to be at least two. At that point, you probably asked yourself the question in the title of this talk. While the genus is computable for any given irreducible curve, it depends in a delicate way on the singular points. I’ll talk about a much nicer formula that applies to irreducible “variables separated” curves, that is, those given by A(x) = B(y) where A and B are rational functions.

Then I’ll discuss how to use this to resolve the question that motivated me originally: given an integer m > 1 and a rational function f defined over a number field K, does f possess a K-orbit containing infinitely many mth powers of elements of K? The answer turns out to be no unless f has a very special form: for m > 4 the map f must essentially be the mth power of some rational function, while for smaller m other exceptions arise, including maps closely related to multiplication on elliptic curves. If time permits I’ll discuss a connection to an arithmetic dynamical analogue of the Mordell-Lang conjecture.


Dec 14

Robert J. Lemke Oliver
Selmer groups, Tate-Shafarevich groups, and ranks of abelian varieties in quadratic twist families
Abstract: We determine the average size of the $\phi$-Selmer group in any quadratic twist family of abelian varieties having an isogeny $\phi$ of degree 3 over any number field. This has several applications towardsthe rank statistics in such families of quadratic twists. For example, it yields the first known quadratic twist families of absolutely simple abelian varieties over $\mathbb{Q}$, of dimension greater than one, for which the average rank is bounded; in fact, we obtain such twist families in arbitrarily large dimension. In the case that $E/F$ is an elliptic curve admitting a 3-isogeny, we prove that the average rank of its quadratic twists is bounded; if $F$ is totally real, we moreover show that a positive proportion of these twists have rank 0 and a positive proportion have $3$-Selmer rank 1. We also obtain consequences for Tate-Shafarevich groups of quadratic twists of a given elliptic curve. This is joint work with Manjul Bhargava, Zev Klagsbrun, and Ari Shnidman.