SIAM Student Chapter Seminar: Difference between revisions

From UW-Math Wiki
Jump to navigation Jump to search
No edit summary
 
(220 intermediate revisions by 11 users not shown)
Line 1: Line 1:
__NOTOC__
__NOTOC__


*'''When:''' Fridays at 1:30 PM unless noted otherwise
*'''Where:''' 9th floor lounge (we will also broadcast the virtual talks on the 9th floor lounge with refreshments)
*'''Organizers:''' Yahui Qu, Peiyi Chen and Zaidan Wu
*'''Faculty advisers:''' [http://www.math.wisc.edu/~jeanluc/ Jean-Luc Thiffeault], [http://pages.cs.wisc.edu/~swright/ Steve Wright]
*'''To join the SIAM Chapter mailing list:''' email [mailto:siam-chapter+join@g-groups.wisc.edu siam-chapter+join@g-groups.wisc.edu].
*'''Zoom link:''' https://uwmadison.zoom.us/j/97976615799?pwd=U2xFSERIcnR6M1Y1czRmTjQ1bTFJQT09
*'''Passcode:  281031'''


== Spring 2025 ==


*'''When:''' Every Other Wednesday at 2:15 pm (except as otherwise indicated)
{| class="wikitable"
*'''Where:''' 901 Van Vleck Hall
|+
*'''Organizers:''' [http://www.math.wisc.edu/~ke/ Ke Chen]
|Date
*'''To join the SIAM Chapter mailing list:''' email [join-siam-chapter@lists.wisc.edu] website.
|Location
 
|Speaker
<br>
|Title
 
 
== Fall 2018  ==
 
{| cellpadding="8"
!align="left" | date
!align="left" | speaker
!align="left" | title
|-
| Sept. 12
|[http://www.math.wisc.edu/~ke/ Ke Chen] (Math)
|''[[#Sep 12: Ke Chen (Math)|Inverse Problem in Optical Tomography]]''
|-
| Spet. 26 
|[http://www.math.wisc.edu/~kehlert/ Kurt Ehlert] (Math)
|''[[#Sept 26: Kurt Ehlert (Math)|  How to bet when gambling]]''
|-
| Oct. 10 
|[http://TBD Zachary Hansen] (Atmospheric and Oceanic Sciences)
|''[[#Oct 10: Zachary Hansen (Atmospheric and Oceanic Sciences)|  Land-Ocean contrast in lightning  ]]''
|-
|-
| Oct. 24 
|03/07
|[http://TBD Xuezhou Zhang] (Computer Science)
|9th floor
|''[[#Oct 24: Xuezhou Zhang (Computer Science)| An Optimal Control Approach to Sequential Machine Teaching  ]]''
|Ang Li
|Applying for postdocs and different industry jobs ... at the
same time
|-
|-
| Nov. 7
|04/04
|[http://TBD Cancelled]
|9th floor
|''[[#Nov 7: Cancelled| ]]''
|Borong Zhang
|Stochastic Multigrid Minimization for Ptychographic Phase Retrieval
|-
|-
| Nov. 21
|04/11
|[http://TBD Cancelled due to Thanksgiving]
|903
|''[[#Nov 21: Cancelled| ]]''
|Ian McPherson
|Convergence Rates for Riemannian Proximal Bundle Methods
|-
|-
| Nov. 28
|04/25
|[http://TBD Xiaowu Dai] (Statistics)
|903
|''[[#Nov 28: Xiaowu Dai (Statistics)| Toward the Theoretical Understanding of Large-batch Training in Stochastic Gradient Descent  ]]''
|Weidong Ma
|-
|A topic in kernel based independence testing
|
|}
|}




== Abstract ==
==Abstracts==
 
=== Sep 12: Ke Chen (Math) ===
Inverse Problem in Optical Tomography
 
I will briefly talk about my researches on the inverse problems of radiative transfer equations, which is usually used as a model to describe the transport of neutrons or other particles in a certain media. Such inverse problems considers the following question: given the knowledge of multiple data collected at the boundary of the domain of interest, is it possible to reconstruct the optical property of the interior of media? In this talk, I will show you that stability of this problem is deteriorating as the Knudsen number is getter smaller. The talk will be introductory and anyone graduate is welcome to join us.
 
=== Sept 26: Kurt Ehlert (Math) ===
How to bet when gambling
 
When gambling, typically casinos have an edge. But sometimes we can gain an edge by counting cards or other means. And sometimes we have an edge in the biggest casino of all: the financial markets. When we do have an advantage, then we still need to decide how much to bet. Bet too little, and we leave money on the table. Bet too much, and we risk financial ruin. We will discuss the "Kelly criterion", which is a betting strategy that is optimal in many senses.
 
=== Oct 10: Zachary Hansen (Atmospheric and Oceanic Sciences) ===
Land-Ocean contrast in lightning
 
Land surfaces have orders of magnitude more lightning flashes than ocean surfaces. One explanation for this difference is that land surfaces may generate greater convective available potential energy (CAPE), which fuels stronger thunderstorms. Using a high resolution cloud-resolving atmospheric model, we test whether an island can produce stronger thunderstorms just by having a land-like surface. We find that the island alters the distribution of rainfall but does not produce stronger storms. An equilibrium state known as boundary layer quasi-equilibrium follows, and is explored in more detail.
 
=== Oct 24: Xuezhou Zhang (Computer Science) ===
An Optimal Control Approach to Sequential Machine Teaching


Given a sequential learning algorithm and a target model, sequential machine teaching aims to find the shortest training sequence to drive the learning algorithm to the target model. We present the first principled way to find such shortest training sequences. Our key insight is to formulate sequential machine teaching as a time-optimal control problem. This allows us to solve sequential teaching by leveraging key theoretical and computational tools developed over the past 60 years in the optimal control community. Specifically, we study the Pontryagin Maximum Principle, which yields a necessary condition for opti- mality of a training sequence. We present analytic, structural, and numerical implica- tions of this approach on a case study with a least-squares loss function and gradient de- scent learner. We compute optimal train- ing sequences for this problem, and although the sequences seem circuitous, we find that they can vastly outperform the best available heuristics for generating training sequences.
'''March 7th, Ang Li (UW-Madison)''': I will share my experience with postdoc and industry job applications. This talk might be helpful for those who haven’t decided between academia and industry or are considering different paths within industry since I made my own decision quite late.


=== Nov 7: Cancelled ===
'''April 4th, Borong Zhang (UW-Madison)''': In this talk, we introduce a novel stochastic multigrid minimization method designed for ptychographic phase retrieval. By reformulating the inverse problem as the iterative minimization of a quadratic surrogate that majorizes the original objective function, our approach unifies a range of iterative algorithms, including first-order methods and the well-known Ptychographic Iterative Engine (PIE). By efficiently solving the surrogate problem using a multigrid method, our method delivers significant improvements in both convergence speed and reconstruction quality compared to conventional PIE techniques.


=== Nov 21: Cancelled ===
'''April 11th, Ian McPherson (Johns-Hopkins):''' Nonsmooth convex optimization is a classically studied regime with a plethora of different optimization algorithms being developed in order to solve them. Of these methods, proximal bundle methods have been created and used within the Euclidean setting for decades - attempting to mimic the dynamics of the proximal point method. While practitioners have enjoyed very robust convergence results with respect to choice of parameters, it was not until the late 2020s that we have had theoretical results giving non-asymptotic guarantees - recovering optimal convergence rates. Within the past few years, the first Riemannian Proximal Bundle Methods have been proposed, again lacking non-asymptotic guarantees. Within this talk, we discuss how we are able to both generalize proposed methods and lift the non-asymptotic rates to the Riemannian setting. Moreover, we will do so without access to exponential maps or parallel transports. In addition, to our knowledge these are the first theoretical guarantees for non-smooth geodesically convex optimization in the Riemannian setting, without access to either exponential maps and parallel transports. The work presented is joint work with Mateo Diaz and Benjamin Grimmer.


=== Nov 28: Xiaowu Dai (Statistics) ===
'''April 25th, Weidong Ma (Univeristy of Pennsylvania)''': Testing the independence of random vectors is a fundamental problem across many scientific disciplines. In this talk, I will first introduce several widely used methods for independence testing, including distance covariance (DC), the Hilbert-Schmidt Independence Criterion (HSIC), and their applications. Most of these methods lack tractable asymptotic distributions under the null hypothesis (i.e., independence), making their use rely on computationally intensive procedures such as permutation tests or bootstrap methods.
Toward the Theoretical Understanding of Large-batch Training in Stochastic Gradient Descent


Stochastic gradient descent (SGD) is almost ubiquitously used for training nonconvex optimization tasks including deep neural networks. Recently, a hypothesis that "large batch SGD tends to converge to sharp minimizers of training function" has received increasing attention. We develop some new theory to give a justification of this hypothesis. In particular, we provide new properties of SGD in both finite-time and asymptotic regimes, with the tools from empirical processes and Partial Differential Equations. A connection between the stochasticity in SGD and the idea of smoothing splines in nonparametric statistics is also built. We include numerical experiments to corroborate these theoretical findings.
To address this, I will present our recent work aimed at reducing the computational cost of independence testing. We propose a modified HSIC test, termed HSICskb, which incorporates a bandwidth adjustment where one kernel’s bandwidth shrinks to zero as the sample size grows. We establish a Gaussian approximation result for our test statistic, which allows us to compute the p-value efficiently.


To assess statistical efficiency, we also conduct a local power analysis of the standard bootstrap-based HSIC test—an independently interesting contribution—and compare it with our HSICskb test. Finally, I will demonstrate the application of our method to real data, exploring the relationship between age and personal traits.


<br>
==Past Semesters==
*[[SIAM Seminar Fall 2024|Fall 2024]]
*[https://wiki.math.wisc.edu/index.php/SIAM_Spring_2024 Spring 2024]
*[[SIAM Fall 2023|Fall 2023]]
*[[SIAM Spring 2023|Spring 2023]]
*[[SIAM Seminar Fall 2022|Fall 2022]]
*[[Spring 2022 SIAM|Spring 2022]]
*[[SIAM Student Chapter Seminar/Fall2021|Fall 2021]]
*[[SIAM_Student_Chapter_Seminar/Fall2020|Fall 2020]]
*[[SIAM_Student_Chapter_Seminar/Spring2020|Spring 2020]]
*[[SIAM_Student_Chapter_Seminar/Fall2019|Fall 2019]]
*[[SIAM_Student_Chapter_Seminar/Fall2018|Fall 2018]]
*[[SIAM_Student_Chapter_Seminar/Spring2017|Spring 2017]]

Latest revision as of 04:41, 21 April 2025


Spring 2025

Date Location Speaker Title
03/07 9th floor Ang Li Applying for postdocs and different industry jobs ... at the

same time

04/04 9th floor Borong Zhang Stochastic Multigrid Minimization for Ptychographic Phase Retrieval
04/11 903 Ian McPherson Convergence Rates for Riemannian Proximal Bundle Methods
04/25 903 Weidong Ma A topic in kernel based independence testing


Abstracts

March 7th, Ang Li (UW-Madison): I will share my experience with postdoc and industry job applications. This talk might be helpful for those who haven’t decided between academia and industry or are considering different paths within industry since I made my own decision quite late.

April 4th, Borong Zhang (UW-Madison): In this talk, we introduce a novel stochastic multigrid minimization method designed for ptychographic phase retrieval. By reformulating the inverse problem as the iterative minimization of a quadratic surrogate that majorizes the original objective function, our approach unifies a range of iterative algorithms, including first-order methods and the well-known Ptychographic Iterative Engine (PIE). By efficiently solving the surrogate problem using a multigrid method, our method delivers significant improvements in both convergence speed and reconstruction quality compared to conventional PIE techniques.

April 11th, Ian McPherson (Johns-Hopkins): Nonsmooth convex optimization is a classically studied regime with a plethora of different optimization algorithms being developed in order to solve them. Of these methods, proximal bundle methods have been created and used within the Euclidean setting for decades - attempting to mimic the dynamics of the proximal point method. While practitioners have enjoyed very robust convergence results with respect to choice of parameters, it was not until the late 2020s that we have had theoretical results giving non-asymptotic guarantees - recovering optimal convergence rates. Within the past few years, the first Riemannian Proximal Bundle Methods have been proposed, again lacking non-asymptotic guarantees. Within this talk, we discuss how we are able to both generalize proposed methods and lift the non-asymptotic rates to the Riemannian setting. Moreover, we will do so without access to exponential maps or parallel transports. In addition, to our knowledge these are the first theoretical guarantees for non-smooth geodesically convex optimization in the Riemannian setting, without access to either exponential maps and parallel transports. The work presented is joint work with Mateo Diaz and Benjamin Grimmer.

April 25th, Weidong Ma (Univeristy of Pennsylvania): Testing the independence of random vectors is a fundamental problem across many scientific disciplines. In this talk, I will first introduce several widely used methods for independence testing, including distance covariance (DC), the Hilbert-Schmidt Independence Criterion (HSIC), and their applications. Most of these methods lack tractable asymptotic distributions under the null hypothesis (i.e., independence), making their use rely on computationally intensive procedures such as permutation tests or bootstrap methods.

To address this, I will present our recent work aimed at reducing the computational cost of independence testing. We propose a modified HSIC test, termed HSICskb, which incorporates a bandwidth adjustment where one kernel’s bandwidth shrinks to zero as the sample size grows. We establish a Gaussian approximation result for our test statistic, which allows us to compute the p-value efficiently.

To assess statistical efficiency, we also conduct a local power analysis of the standard bootstrap-based HSIC test—an independently interesting contribution—and compare it with our HSICskb test. Finally, I will demonstrate the application of our method to real data, exploring the relationship between age and personal traits.

Past Semesters