NTSGrad Fall 2021/Abstracts: Difference between revisions

From UW-Math Wiki
Jump to navigation Jump to search
(Created page with "This page contains the titles and abstracts for talks scheduled in the Fall 2021 semester. To go back to the main GNTS page, click here. == Sep 14 ==...")
 
 
(19 intermediate revisions by 3 users not shown)
Line 7: Line 7:
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"
|-
|-
| bgcolor="#F0A0A0" align="center" style="font-size:125%" | '''TBA'''
| bgcolor="#F0A0A0" align="center" style="font-size:125%" | '''Hyun Jong Kim'''
|-
|-
| bgcolor="#BCD2EE"  align="center" | ''TBA''
| bgcolor="#BCD2EE"  align="center" | ''What would Jordan do?''
|-
|-
| bgcolor="#BCD2EE"  |  
| bgcolor="#BCD2EE"  | In his [https://people.math.wisc.edu/~ellenber/gradstudents.html notes for students], Jordan has a list of general topics and references in number theory/algebraic geometry/arithmetic geometry that students in arithmetic geometry should be comfortable with after a certain point of time. I will introduce some language used in these general topics for beginners.
 
 
|}                                                                         
|}                                                                         
</center>
</center>
Line 24: Line 22:
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"
|-
|-
| bgcolor="#F0A0A0" align="center" style="font-size:125%" | '''Qiao He'''
| bgcolor="#F0A0A0" align="center" style="font-size:125%" | '''Peter YI WEI'''
|-
|-
| bgcolor="#BCD2EE"  align="center" | ''Supersingular locus of Unitary Shimura variety''
| bgcolor="#BCD2EE"  align="center" | ''The S-Unit equation: p-adic approaches''
|-
|-
| bgcolor="#BCD2EE"  |I will give a summary of supersingular locus of Unitary Shimura variety. This description is really the first and an important step to understand the structure of Unitary Shimura variety. Turns out that the description of such locus will boil down to certain linear algebra. The final result will be the supersingular locus have a stratification, and the incidence relation will be closely related with the Bruhat-Tits building of unitary group. Also, each strata is closely related with affine Deligne Lustig variety. The Dieudonne module theory will be summarized. Take it for granted, all the remaining material can follow easily!
| bgcolor="#BCD2EE"  | In this talk, I will go over the history of rational/integral points on curves. In particular, I will introduce a recent proof of the S-unit equation using p-adic period maps, given by Lawrence-Venkatesh.
|}                                                                         
|}                                                                         
</center>
</center>
Line 39: Line 37:
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"
|-
|-
| bgcolor="#F0A0A0" align="center" style="font-size:125%" | '''Ivan Aidun'''
| bgcolor="#F0A0A0" align="center" style="font-size:125%" | '''TBA'''
|-
|-
| bgcolor="#BCD2EE"  align="center" | ''Simple Sieving''
| bgcolor="#BCD2EE"  align="center" | ''TBA''
|-
|-
| bgcolor="#BCD2EE"  |The idea of sieving out primes is among the oldest in mathematics.  However, it has proven incredibly fruitful, and now sieve techniques lie behind some of the most striking results in modern number theory, such as the results of Zhang, Maynard, and the Polymath project on bounded gaps between primes.  In this talk, I will develop some of the basic sieve constructions, from Eratosthenes and Legendre to Brun, and hint at some of the developments that lie beyond.  This talk will be accessible to a general mathematical audience.
| bgcolor="#BCD2EE"  |
|}                                                                         
|}                                                                         
</center>
</center>
Line 58: Line 56:
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"
|-
|-
| bgcolor="#F0A0A0" align="center" style="font-size:125%" | '''Asvin G'''
| bgcolor="#F0A0A0" align="center" style="font-size:125%" | '''Yifan Wei'''
|-
|-
| bgcolor="#BCD2EE"  align="center" | ''F_un with F_1''
| bgcolor="#BCD2EE"  align="center" | ''Lifting a smooth curve from char p to char 0''
|-
|-
| bgcolor="#BCD2EE"  | You have probably heard of a field with one element in various places and might have been, very understandably, confused. How can there be a field with one element and even if there is, how could it possible be interesting? I will try and explain the philosophy behind why this is a reasonable thing to wish for and various mathematical facts that *should* be interpreted through this lens.  
| bgcolor="#BCD2EE"  | Geometry over char p is fascinating or frustrating, depending on who you are. However varieties over char 0 could be enjoyed by geometers of all kinds. We will dicuss one way of lifting a smooth projective variety from char p to char 0. After applying our technique to curves we briefly mention the situation in higher dimensions. And if time permits, we discuss a non-liftable example by Serre.
 
The talk will just be a bunch of examples of the various manifestations of the field with one element throughout mathematics!
|}                                                                         
|}                                                                         
</center>
</center>


<br>
<br>


== Oct 12 ==
== Oct 12 ==
Line 76: Line 71:
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"
|-
|-
| bgcolor="#F0A0A0" align="center" style="font-size:125%" | '''Yu Fu'''
| bgcolor="#F0A0A0" align="center" style="font-size:125%" | '''TBA'''
|-
|-
| bgcolor="#BCD2EE"  align="center" | ''CM liftings of Abelian Varieties''
| bgcolor="#BCD2EE"  align="center" | ''TBA''
|-
|-
| bgcolor="#BCD2EE"  | This will be a introductory talk to introduce the CM liftings of Abelian Varieties.
| bgcolor="#BCD2EE"  |  
Honda-Tate theory tells us every abelian variety over a finite field can be lifted to an abelian variety with smCM in characteristic 0. There are various lifting problems if you drop/change some of the conditions, i.e. Is it an isogeny or residue class field extension necessary? Can we lift any abelian variety over a finite field to a normal domain up to isogeny? Etc.etc.
Let's explore with some fun examples!
|}                                                                         
|}                                                                         
</center>
</center>
Line 93: Line 86:
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"
|-
|-
| bgcolor="#F0A0A0" align="center" style="font-size:125%" | '''Will Hardt'''
| bgcolor="#F0A0A0" align="center" style="font-size:125%" | '''TBA'''
|-
|-
| bgcolor="#BCD2EE"  align="center" | ''Linear Relations Among Galois Conjugates''
| bgcolor="#BCD2EE"  align="center" | ''TBA''
|-
|-
| bgcolor="#BCD2EE"  | In 1986, Smyth asked, and conjectured an answer to, the question of what can be the coefficients of a linear relation among Galois conjugates over Q. That is, for which (a_1,...,a_n) in Z^n do there exist Galois conjugates \gamma_1, ..., \gamma_n such that \sum_{i=1}^n a_i \gamma_i = 0? I will talk about joint work with John Yin in which we answer the analogous question over the function field F_q(t). We also formulate what we think is the right generalization of Smyth's Conjecture over a general number field.
| bgcolor="#BCD2EE"  |  
|}                                                                         
|}                                                                         
</center>
</center>
Line 110: Line 103:
| bgcolor="#F0A0A0" align="center" style="font-size:125%" | '''Di Chen'''
| bgcolor="#F0A0A0" align="center" style="font-size:125%" | '''Di Chen'''
|-
|-
| bgcolor="#BCD2EE"  align="center" | ''Negative Pell Equations''
| bgcolor="#BCD2EE"  align="center" | ''Special values of zeta functions at positive even integers''
|-
|-
| bgcolor="#BCD2EE"  | I will review negative Pell equations and introduce Stevenhagen’s conjecture briefly. Then I discuss its relation with 2^k-rank of class groups and introduce basic tools like genus theory, Artin pairing, Redei matrices and Redei reciprocity.
| bgcolor="#BCD2EE"  | I will introduce Euler's classical result over Q, Klingen-Siegel theorem over totally real number fields, and Zagier's theorems and conjectures over general number fields. I will give many examples and discuss their proofs. If time permits, I will discuss its relation with K-theory.
|}                                                                         
|}                                                                         
</center>
</center>
Line 123: Line 116:
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"
|-
|-
| bgcolor="#F0A0A0" align="center" style="font-size:125%" | '''Hyun Jong Kim'''
| bgcolor="#F0A0A0" align="center" style="font-size:125%" | '''Jerry Y. Fu'''
|-
|-
| bgcolor="#BCD2EE"  align="center" | ''Comparison of A1-degrees''
| bgcolor="#BCD2EE"  align="center" | ''Diophantine approximation: How I learned to stop worrying and love integral points''
|-
|-
| bgcolor="#BCD2EE"  | I recently talked about the Grothendieck-Witt ring and some A1-enriched enumerations, such as degrees, during my specialty exam. I will go into some more detail on when and how some of A1-enumerations, such as Morel's A1 Brouwer degree, the local A^1 Brouwer degree, the enriched Euler number and the A1-degree of maps of more general maps of schemes, are defined.
| bgcolor="#BCD2EE"  | Diophantine approximation is a crucial tool in studying integral points and Schlickewei's theorem is a very useful theorem in proving finiteness theorems on integral points. In the first part of my talk I will show some elegant proof as applications of the subspace theorem such as Vojta's theorem, the S-unit equation, and then I will introduce main conjectures: Vojta, Mordell, Bombieri and Lang, and their relations to each other.
                     
|}                                                                         
|}                                                                         
</center>
</center>
Line 138: Line 132:
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"
|-
|-
| bgcolor="#F0A0A0" align="center" style="font-size:125%" | '''Asvin Gothandaraman'''
| bgcolor="#F0A0A0" align="center" style="font-size:125%" | '''TBA'''
|-
|-
| bgcolor="#BCD2EE"  align="center" | ''Computational number theory''
| bgcolor="#BCD2EE"  align="center" | ''TBA''
|-
|-
| bgcolor="#BCD2EE"  | I will talk about computational number theory. It will all be pretty elementary and I will cover topics like how to factor integers quickly using number fields or elliptic curves and some related topics.
| bgcolor="#BCD2EE"  |  
|}                                                                         
|}                                                                         
</center>
</center>
Line 153: Line 147:
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"
|-
|-
| bgcolor="#F0A0A0" align="center" style="font-size:125%" | '''Ruofan Jiang'''
| bgcolor="#F0A0A0" align="center" style="font-size:125%" | '''TBA'''
|-
|-
| bgcolor="#BCD2EE"  align="center" | ''Galois theory over k(x)''
| bgcolor="#BCD2EE"  align="center" | ''TBA''
|-
|-
| bgcolor="#BCD2EE"  | When k=C, this is the very classical theory of Riemann surface; for other k, especially when k is char p, the Galois theory of k(x) becomes much wilder. One way to study it is via rigid geometry, which enable us to talk about “analytical patching” in a much general context....
| bgcolor="#BCD2EE"  |  




Line 169: Line 163:
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"
|-
|-
| bgcolor="#F0A0A0" align="center" style="font-size:125%" | '''Jiaqi Hou'''
| bgcolor="#F0A0A0" align="center" style="font-size:125%" | '''Eiki Norizuki'''
|-
|-
| bgcolor="#BCD2EE"  align="center" | ''Hecke algebras for p-adic groups''
| bgcolor="#BCD2EE"  align="center" | ''Local Reciprocity''
|-
|-
| bgcolor="#BCD2EE"  | Given a smooth representation of some p-adic group, we can associate it with modules over Hecke algebras.  We will introduce the Satake transform which identifies the spherical Hecke algebra of a reductive group w.r.t a special maximal compact subgroup with a commutative ring of Weyl group invariants. The Satake isomorphism can help us understand spherical representations.
| bgcolor="#BCD2EE"  |  
 
I will talk about local reciprocity, a correspondence of the Galois group of the maximal abelian extension and the multiplicative group. In particular, I will talk about Lubin-Tate theory which constructs this map.
 




Line 180: Line 177:


<br>
<br>
== Nov 30 ==
== Nov 30 ==


Line 185: Line 183:
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"
|-
|-
| bgcolor="#F0A0A0" align="center" style="font-size:125%" | '''Yunus Tuncbilek'''
| bgcolor="#F0A0A0" align="center" style="font-size:125%" | '''Tejasi Bhatnagar'''
|-
|-
| bgcolor="#BCD2EE"  align="center" | ''Three of the Biggest Questions That Science Can’t Answer''
| bgcolor="#BCD2EE"  align="center" | ''Counting Number fields: A baby example using Bhargava’s techniques. ''
|-
|-
| bgcolor="#BCD2EE"  | I will present three problems that I really enjoyed working on. The problems will be combinatorial in nature and will look very simple, but their actual difficulties will range from challenging to extremely difficult, slash possibly impossible. The talk assumes no background — literally. I presented one of the problems to my Calc 2 class today.
| bgcolor="#BCD2EE"  | In this talk, we will walk through a simple example of counting quadratic extensions using the discriminant. Although, this has been done using classical methods, we will highlight the techniques used by Bhargava through our example, that were essentially used to count the higher degree cases.  
 




Line 198: Line 195:


<br>
<br>
== Dec 7==
== Dec 7==


Line 203: Line 201:
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"
|-
|-
| bgcolor="#F0A0A0" align="center" style="font-size:125%" | '''Yu Fu'''
| bgcolor="#F0A0A0" align="center" style="font-size:125%" | '''Qiao He'''
|-
|-
| bgcolor="#BCD2EE"  align="center" | ''Chabauty method at bad reduction''
| bgcolor="#BCD2EE"  align="center" | ''Siegel-Weil Formula''
|-
|-
| bgcolor="#BCD2EE"  | This is an introduction talk to the Chabauty-Coleman method at a prime of bad reduction. I will talk about results, progress and also include a proof by using intersection theory. Let's also take a look at some examples to estimate if the bound is sharp or we can obtain a better one.
| bgcolor="#BCD2EE"  | Given a positive definite quadratic form X_1^2+...+X_n^2, a natural question to ask is can we find a formula for $r_n(m)=\#\{X\in Z^n| Q(X)=m\}$. Although no explicit formula for $r_n(m)$ is known in general, there do exist an average formula, which is a prototype of the so called Siegel-Weil formula. In this talk, I will introduce Siegel-Weil formula, and show how Deuring's mass formula for supersingular elliptic curve and Hurwitz class number formula follows from Siegel-Weil formula.  




Line 214: Line 212:


<br>
<br>
== Dec 14 ==
== Dec 14 ==


Line 219: Line 218:
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"
|-
|-
| bgcolor="#F0A0A0" align="center" style="font-size:125%" | '''Sang Yup Han'''
| bgcolor="#F0A0A0" align="center" style="font-size:125%" | '''John Yin'''
|-
|-
| bgcolor="#BCD2EE"  align="center" | ''Arithmetic Invariant Theory''
| bgcolor="#BCD2EE"  align="center" | ''Heights on Stacks''
|-
|-
| bgcolor="#BCD2EE"  | This talk will give a very general overview of arithmetic invariant theory of Bhargava, Gross, and Wang, including background motivation and examples.  
| bgcolor="#BCD2EE"  | I will motivate and introduce the definition of a height. Then, I will talk a bit about Arakelov height. This will then lead into a recent paper by Ellenberg, Satriano, and Zureick-Brown, which introduces a notion of height on stacks.
 
 





Latest revision as of 21:25, 13 December 2021

This page contains the titles and abstracts for talks scheduled in the Fall 2021 semester. To go back to the main GNTS page, click here.


Sep 14

Hyun Jong Kim
What would Jordan do?
In his notes for students, Jordan has a list of general topics and references in number theory/algebraic geometry/arithmetic geometry that students in arithmetic geometry should be comfortable with after a certain point of time. I will introduce some language used in these general topics for beginners.


Sep 21

Peter YI WEI
The S-Unit equation: p-adic approaches
In this talk, I will go over the history of rational/integral points on curves. In particular, I will introduce a recent proof of the S-unit equation using p-adic period maps, given by Lawrence-Venkatesh.


Sep 28

TBA
TBA


|}


Oct 5

Yifan Wei
Lifting a smooth curve from char p to char 0
Geometry over char p is fascinating or frustrating, depending on who you are. However varieties over char 0 could be enjoyed by geometers of all kinds. We will dicuss one way of lifting a smooth projective variety from char p to char 0. After applying our technique to curves we briefly mention the situation in higher dimensions. And if time permits, we discuss a non-liftable example by Serre.


Oct 12

TBA
TBA


Oct 19

TBA
TBA


Oct 26

Di Chen
Special values of zeta functions at positive even integers
I will introduce Euler's classical result over Q, Klingen-Siegel theorem over totally real number fields, and Zagier's theorems and conjectures over general number fields. I will give many examples and discuss their proofs. If time permits, I will discuss its relation with K-theory.


Nov 2

Jerry Y. Fu
Diophantine approximation: How I learned to stop worrying and love integral points
Diophantine approximation is a crucial tool in studying integral points and Schlickewei's theorem is a very useful theorem in proving finiteness theorems on integral points. In the first part of my talk I will show some elegant proof as applications of the subspace theorem such as Vojta's theorem, the S-unit equation, and then I will introduce main conjectures: Vojta, Mordell, Bombieri and Lang, and their relations to each other.


Nov 9

TBA
TBA


Nov 16

TBA
TBA



Nov 23

Eiki Norizuki
Local Reciprocity

I will talk about local reciprocity, a correspondence of the Galois group of the maximal abelian extension and the multiplicative group. In particular, I will talk about Lubin-Tate theory which constructs this map.



Nov 30

Tejasi Bhatnagar
Counting Number fields: A baby example using Bhargava’s techniques.
In this talk, we will walk through a simple example of counting quadratic extensions using the discriminant. Although, this has been done using classical methods, we will highlight the techniques used by Bhargava through our example, that were essentially used to count the higher degree cases.



Dec 7

Qiao He
Siegel-Weil Formula
Given a positive definite quadratic form X_1^2+...+X_n^2, a natural question to ask is can we find a formula for $r_n(m)=\#\{X\in Z^n| Q(X)=m\}$. Although no explicit formula for $r_n(m)$ is known in general, there do exist an average formula, which is a prototype of the so called Siegel-Weil formula. In this talk, I will introduce Siegel-Weil formula, and show how Deuring's mass formula for supersingular elliptic curve and Hurwitz class number formula follows from Siegel-Weil formula.



Dec 14

John Yin
Heights on Stacks
I will motivate and introduce the definition of a height. Then, I will talk a bit about Arakelov height. This will then lead into a recent paper by Ellenberg, Satriano, and Zureick-Brown, which introduces a notion of height on stacks.