SIAM Student Chapter Seminar: Difference between revisions

From UW-Math Wiki
Jump to navigation Jump to search
mNo edit summary
 
(171 intermediate revisions by 9 users not shown)
Line 1: Line 1:
__NOTOC__
__NOTOC__


*'''When:''' 3:30 pm
*'''When:''' Fridays at 1:30 PM unless noted otherwise
*'''Where:''' Zoom
*'''Where:''' 9th floor lounge (we will also broadcast the virtual talks on the 9th floor lounge with refreshments)
*'''Organizers:''' [http://www.math.wisc.edu/~xshen/ Xiao Shen]
*'''Organizers:''' Yahui Qu, Peiyi Chen and Zaidan Wu
*'''Faculty advisers:''' [http://www.math.wisc.edu/~jeanluc/ Jean-Luc Thiffeault], [http://pages.cs.wisc.edu/~swright/ Steve Wright]  
*'''Faculty advisers:''' [http://www.math.wisc.edu/~jeanluc/ Jean-Luc Thiffeault], [http://pages.cs.wisc.edu/~swright/ Steve Wright]  
*'''To join the SIAM Chapter mailing list:''' email [mailto:siam-chapter+join@g-groups.wisc.edu siam-chapter+join@g-groups.wisc.edu].
*'''To join the SIAM Chapter mailing list:''' email [mailto:siam-chapter+join@g-groups.wisc.edu siam-chapter+join@g-groups.wisc.edu].
*'''Zoom link:''' https://uwmadison.zoom.us/j/97976615799?pwd=U2xFSERIcnR6M1Y1czRmTjQ1bTFJQT09
*'''Passcode:  281031'''


<br>
== Spring 2025 ==


== Fall 2020  ==
{| class="wikitable"
 
|+
{| cellpadding="8"
|Date
!align="left" | date
|Location
!align="left" | speaker
|Speaker
!align="left" | title
|Title
|-
|-
|9/29
|03/07
|Yu Feng (Math)
|9th floor
|''[[#9/29, Yu Feng (Math)|Phase separation in the advective Cahn--Hilliard equation]]''
|Ang Li
|Applying for postdocs and different industry jobs ... at the
same time
|-
|-
|04/04
|9th floor
|Borong Zhang
|Stochastic Multigrid Minimization for Ptychographic Phase Retrieval
|-
|-
|10/14
|04/11
|Dongyu Chen (WPI)
|903
|''[[#10/14, Yuchen Dong (WPI)|A Half-order Numerical Scheme for Nonlinear SDEs with one-sided Lipschitz Drift and H\:{o}lder Continuous Diffusion Coefficients]]''
|Ian McPherson
|Convergence Rates for Riemannian Proximal Bundle Methods
|-
|-
|-
|04/25
|10/28
|903
|Evan Sorensen (math)
|Weidong Ma
|''[[#10/28, Evan Sorenson (math)|Unsupervised data classification via Bayesian inference]]''
|A topic in kernel based independence testing
|-
|-
|-
|-
|11/23
|Weijie Pang (McMaster University)
|''[[#11/23, Weijie Pang (McMaster University)|Pandemic Model with Asymptomatic Viral Carriers and Health Policy]]''
|-
|-
|
|}
|}
== Abstracts ==
=== 9/29, Yu Feng (Math) ===
'''Phase separation in the advective Cahn--Hilliard equation'''
The Cahn--Hilliard equation is a classic model of phase separation in binary mixtures that exhibits spontaneous coarsening of the phases. We study the Cahn--Hilliard equation with an imposed advection term in order to model the stirring and eventual mixing of the phases. The main result is that if the imposed advection is sufficiently mixing then no phase separation occurs, and the solution instead converges exponentially to a homogeneous mixed state. The mixing effectiveness of the imposed drift is quantified in terms of the dissipation time of the associated advection-hyperdiffusion equation, and we produce examples of velocity fields with a small dissipation time. We also study the relationship between this quantity and the dissipation time of the standard advection-diffusion equation.
=== 10/14, Yuchen Dong (WPI) ===
'''A Half-order Numerical Scheme for Nonlinear SDEs with one-sided Lipschitz Drift and Hölder Continuous Diffusion Coefficients'''
We consider positivity-preserving explicit schemes for one-dimensional nonlinear stochastic differential
equations. The drift coefficients satisfy the one-sided Lipschitz condition, and the diffusion coefficients
are Hölder continuous. To control the fast growth of moments of solutions, we introduce several explicit
schemes including the tamed and truncated Euler schemes. The fundamental idea is to guarantee the
non-negativity of solutions. The proofs rely on the boundedness for negative moments and exponential of
negative moments. We present several numerical schemes for a modified Cox-Ingersoll-Ross model and a
two-factor Heston model and demonstrate their half-order convergence rate.
=== 10/28, Evan Sorensen (math) ===
''' Unsupervised data classification via Bayesian inference'''
Bayesian inference is a way of “updating” our current state of knowledge given some data. In this talk, I will discuss how one can use Bayesian inference to classify data into separate groups. Particularly, I will discuss an application of this to outlier detection in contamination control within semiconductor manufacturing. Time permitting, I will talk about some computational tools for these models.




==Abstracts==


=== 11/23, Weijie Pang (McMaster University) ===
'''March 7th, Ang Li (UW-Madison)''': I will share my experience with postdoc and industry job applications. This talk might be helpful for those who haven’t decided between academia and industry or are considering different paths within industry since I made my own decision quite late.


'''Pandemic Model with Asymptomatic Viral Carriers and Health Policy '''
'''April 4th, Borong Zhang (UW-Madison)''': In this talk, we introduce a novel stochastic multigrid minimization method designed for ptychographic phase retrieval. By reformulating the inverse problem as the iterative minimization of a quadratic surrogate that majorizes the original objective function, our approach unifies a range of iterative algorithms, including first-order methods and the well-known Ptychographic Iterative Engine (PIE). By efficiently solving the surrogate problem using a multigrid method, our method delivers significant improvements in both convergence speed and reconstruction quality compared to conventional PIE techniques.


By October 13, 2020, the total number of COVID-19 confirmed cases had been 37,880,040 with 1,081,857 death in the world. The speed, range and influence of this virus exceed any pandemic in history. To find reasons of this incredible fast spread, we introduce asymptomatic category into a SEIR pandemic model. Based on published data of Italy, we calibrated exposed rates of COVID-19 in this model and then simulated the spread of COVID-19 for different asymptomatic rates. To measure the effects of different types of public health policies on this pandemic, we construct a pandemic model including health policies. By the simulation of this model, we provide feasible suggestions of containment to regulators.  
'''April 11th, Ian McPherson (Johns-Hopkins):''' Nonsmooth convex optimization is a classically studied regime with a plethora of different optimization algorithms being developed in order to solve them. Of these methods, proximal bundle methods have been created and used within the Euclidean setting for decades - attempting to mimic the dynamics of the proximal point method. While practitioners have enjoyed very robust convergence results with respect to choice of parameters, it was not until the late 2020s that we have had theoretical results giving non-asymptotic guarantees - recovering optimal convergence rates. Within the past few years, the first Riemannian Proximal Bundle Methods have been proposed, again lacking non-asymptotic guarantees. Within this talk, we discuss how we are able to both generalize proposed methods and lift the non-asymptotic rates to the Riemannian setting. Moreover, we will do so without access to exponential maps or parallel transports. In addition, to our knowledge these are the first theoretical guarantees for non-smooth geodesically convex optimization in the Riemannian setting, without access to either exponential maps and parallel transports. The work presented is joint work with Mateo Diaz and Benjamin Grimmer.


'''April 25th, Weidong Ma (Univeristy of Pennsylvania)''': Testing the independence of random vectors is a fundamental problem across many scientific disciplines. In this talk, I will first introduce several widely used methods for independence testing, including distance covariance (DC), the Hilbert-Schmidt Independence Criterion (HSIC), and their applications. Most of these methods lack tractable asymptotic distributions under the null hypothesis (i.e., independence), making their use rely on computationally intensive procedures such as permutation tests or bootstrap methods.


To address this, I will present our recent work aimed at reducing the computational cost of independence testing.  We propose a modified HSIC test, termed HSICskb, which incorporates a bandwidth adjustment where one kernel’s bandwidth shrinks to zero as the sample size grows. We establish a Gaussian approximation result for our test statistic, which allows us to compute the p-value efficiently.


<br>
To assess statistical efficiency, we also conduct a local power analysis of the standard bootstrap-based HSIC test—an independently interesting contribution—and compare it with our HSICskb test. Finally, I will demonstrate the application of our method to real data, exploring the relationship between age and personal traits.


== Past Semesters ==
==Past Semesters==
*[[SIAM Seminar Fall 2024|Fall 2024]]
*[https://wiki.math.wisc.edu/index.php/SIAM_Spring_2024 Spring 2024]
*[[SIAM Fall 2023|Fall 2023]]
*[[SIAM Spring 2023|Spring 2023]]
*[[SIAM Seminar Fall 2022|Fall 2022]]
*[[Spring 2022 SIAM|Spring 2022]]
*[[SIAM Student Chapter Seminar/Fall2021|Fall 2021]]
*[[SIAM_Student_Chapter_Seminar/Fall2020|Fall 2020]]
*[[SIAM_Student_Chapter_Seminar/Spring2020|Spring 2020]]
*[[SIAM_Student_Chapter_Seminar/Spring2020|Spring 2020]]
*[[SIAM_Student_Chapter_Seminar/Fall2019|Fall 2019]]
*[[SIAM_Student_Chapter_Seminar/Fall2019|Fall 2019]]
*[[SIAM_Student_Chapter_Seminar/Fall2018|Fall 2018]]
*[[SIAM_Student_Chapter_Seminar/Fall2018|Fall 2018]]
*[[SIAM_Student_Chapter_Seminar/Spring2017|Spring 2017]]
*[[SIAM_Student_Chapter_Seminar/Spring2017|Spring 2017]]

Latest revision as of 04:41, 21 April 2025


Spring 2025

Date Location Speaker Title
03/07 9th floor Ang Li Applying for postdocs and different industry jobs ... at the

same time

04/04 9th floor Borong Zhang Stochastic Multigrid Minimization for Ptychographic Phase Retrieval
04/11 903 Ian McPherson Convergence Rates for Riemannian Proximal Bundle Methods
04/25 903 Weidong Ma A topic in kernel based independence testing


Abstracts

March 7th, Ang Li (UW-Madison): I will share my experience with postdoc and industry job applications. This talk might be helpful for those who haven’t decided between academia and industry or are considering different paths within industry since I made my own decision quite late.

April 4th, Borong Zhang (UW-Madison): In this talk, we introduce a novel stochastic multigrid minimization method designed for ptychographic phase retrieval. By reformulating the inverse problem as the iterative minimization of a quadratic surrogate that majorizes the original objective function, our approach unifies a range of iterative algorithms, including first-order methods and the well-known Ptychographic Iterative Engine (PIE). By efficiently solving the surrogate problem using a multigrid method, our method delivers significant improvements in both convergence speed and reconstruction quality compared to conventional PIE techniques.

April 11th, Ian McPherson (Johns-Hopkins): Nonsmooth convex optimization is a classically studied regime with a plethora of different optimization algorithms being developed in order to solve them. Of these methods, proximal bundle methods have been created and used within the Euclidean setting for decades - attempting to mimic the dynamics of the proximal point method. While practitioners have enjoyed very robust convergence results with respect to choice of parameters, it was not until the late 2020s that we have had theoretical results giving non-asymptotic guarantees - recovering optimal convergence rates. Within the past few years, the first Riemannian Proximal Bundle Methods have been proposed, again lacking non-asymptotic guarantees. Within this talk, we discuss how we are able to both generalize proposed methods and lift the non-asymptotic rates to the Riemannian setting. Moreover, we will do so without access to exponential maps or parallel transports. In addition, to our knowledge these are the first theoretical guarantees for non-smooth geodesically convex optimization in the Riemannian setting, without access to either exponential maps and parallel transports. The work presented is joint work with Mateo Diaz and Benjamin Grimmer.

April 25th, Weidong Ma (Univeristy of Pennsylvania): Testing the independence of random vectors is a fundamental problem across many scientific disciplines. In this talk, I will first introduce several widely used methods for independence testing, including distance covariance (DC), the Hilbert-Schmidt Independence Criterion (HSIC), and their applications. Most of these methods lack tractable asymptotic distributions under the null hypothesis (i.e., independence), making their use rely on computationally intensive procedures such as permutation tests or bootstrap methods.

To address this, I will present our recent work aimed at reducing the computational cost of independence testing. We propose a modified HSIC test, termed HSICskb, which incorporates a bandwidth adjustment where one kernel’s bandwidth shrinks to zero as the sample size grows. We establish a Gaussian approximation result for our test statistic, which allows us to compute the p-value efficiently.

To assess statistical efficiency, we also conduct a local power analysis of the standard bootstrap-based HSIC test—an independently interesting contribution—and compare it with our HSICskb test. Finally, I will demonstrate the application of our method to real data, exploring the relationship between age and personal traits.

Past Semesters