SIAM Student Chapter Seminar: Difference between revisions

From UW-Math Wiki
Jump to navigation Jump to search
 
(90 intermediate revisions by 6 users not shown)
Line 1: Line 1:
__NOTOC__
__NOTOC__


*'''When:''' Fridays at 1 PM unless noted otherwise
*'''When:''' Fridays at 1:30 PM unless noted otherwise
*'''Where:''' 9th floor lounge (we will also broadcast the virtual talks on the 9th floor lounge with refreshments)
*'''Where:''' 9th floor lounge (we will also broadcast the virtual talks on the 9th floor lounge with refreshments)
*'''Organizers:''' [https://sites.google.com/wisc.edu/evan-sorensen Evan Sorensen], Jordan Radke, Peiyi Chen, and Yahui Qu
*'''Organizers:''' Yahui Qu, Peiyi Chen and Zaidan Wu
*'''Faculty advisers:''' [http://www.math.wisc.edu/~jeanluc/ Jean-Luc Thiffeault], [http://pages.cs.wisc.edu/~swright/ Steve Wright]  
*'''Faculty advisers:''' [http://www.math.wisc.edu/~jeanluc/ Jean-Luc Thiffeault], [http://pages.cs.wisc.edu/~swright/ Steve Wright]  
*'''To join the SIAM Chapter mailing list:''' email [mailto:siam-chapter+join@g-groups.wisc.edu siam-chapter+join@g-groups.wisc.edu].
*'''To join the SIAM Chapter mailing list:''' email [mailto:siam-chapter+join@g-groups.wisc.edu siam-chapter+join@g-groups.wisc.edu].
*'''Zoom link:''' https://uwmadison.zoom.us/j/99844791267?pwd=eUFwM25Hc2Roc1kvSzR3N2tVVlpLQT09
*'''Zoom link:''' https://uwmadison.zoom.us/j/97976615799?pwd=U2xFSERIcnR6M1Y1czRmTjQ1bTFJQT09
*'''Passcode: 641156'''
*'''Passcode: 281031'''


==Spring 2023==
== Spring 2025 ==


{| class="wikitable"
{| class="wikitable"
!Date (1 PM unless otherwise noted)
|+
!Location
|Date
!Speaker
|Location
!Title
|Speaker
|Title
|-
|-
|2/3
|03/07
|911 Van Vleck
|9th floor
|[https://people.math.wisc.edu/~tuncbilek/ Yunus Tuncbilek]
|Ang Li
|Value Investing: Get Rich “Slowly”
|Applying for postdocs and different industry jobs ... at the
same time
|-
|-
|2/10
|04/04
|Zoom and 911 Van Vleck
|9th floor
|[https://www.linkedin.com/in/yingda-li-4104a7124?challengeId=AQFQxySIWBsxMgAAAYYTi8ACor742OiZ6oRf5w6-TaPIveRNj979D962LC7qY-ASEcc9sv8e-VVmax3gTvdHfahdovW0VO5mNA&submissionId=a1568c15-bf17-4017-3d2e-8b511b5a9918&challengeSource=AgGfrEZn03tKYQAAAYYTjJTxARI38UhpqrEIfn1A7E-sJzqdBc2r7xIpNy1aVPM&challegeType=AgF-i00O8qT08wAAAYYTjJT1kR5S7gpLU3wEUl4aRYch3vq7_-r8uF0&memberId=AgFSiI49MqoqwQAAAYYTjJT4-S5JcSuNEh5taOVyqFcngQg&recognizeDevice=AgHi70ofns9_VwAAAYYTjJT-LiueIGhSYrNyPiir3rJMDLpFMtbW Yinda] Li
|Borong Zhang
|Industry talk
|Stochastic Multigrid Minimization for Ptychographic Phase Retrieval
|-
|-
|2/17
|04/11
|911 Van Vleck
|903
|[https://www.linkedin.com/in/rebecca-gasper/ Rebecca Gasper] ([https://www.epic.com/ Epic])
|Ian McPherson
|Two Careers in Mathematics, from Experience
|Convergence Rates for Riemannian Proximal Bundle Methods
|-
|-
|2/24
|04/25
|Zoom and 911 Van Vleck
|903
|[https://www.linkedin.com/in/alishazachariah/ Alisha Zachariah]
|Weidong Ma
|No Free Lunches: what’s your tradeoff?
|A topic in kernel based independence testing
|-
|3/3
|Zoom and 911 Van Vleck
|Niudun Wang
|Industry talk
|-
|3/10
|Zoom and 911 Van Vleck
|[https://www.linkedin.com/in/kristina-sorensen-wheatman-233124127/ Kristina Wheatman] ([https://www.esm.psu.edu/research/centers-and-institutes/applied-research-lab.aspx Penn State Applied Research Lab])
|Industry talk
|-
|3/31
|Zoom and 911 Van Vleck
|Qifan Chen(https://qifan-chen.github.io)
|The Runge–Kutta discontinuous Galerkin method with compact stencils for hyperbolic conservation laws
|-
|4/7
|Zoom and 911 Van Vleck
|Eza [https://www.linkedin.com/in/enkhzaya-enkhtaivan-20a15222b/ Enkhtaivan]
|Industry talk
|}
|}


==Abstracts==
==Abstracts==


'''February 3, Yunus Tuncbilek:''' I will talk about value investing and why, in many ways, mathematicians are better suited to be value investors than the general public or even the institutional investors. The talk should be informative and enjoyable for any person who wants to increase their income over a long period of time without doing much work.
'''March 7th, Ang Li (UW-Madison)''': I will share my experience with postdoc and industry job applications. This talk might be helpful for those who haven’t decided between academia and industry or are considering different paths within industry since I made my own decision quite late.
 
'''April 4th, Borong Zhang (UW-Madison)''': In this talk, we introduce a novel stochastic multigrid minimization method designed for ptychographic phase retrieval. By reformulating the inverse problem as the iterative minimization of a quadratic surrogate that majorizes the original objective function, our approach unifies a range of iterative algorithms, including first-order methods and the well-known Ptychographic Iterative Engine (PIE). By efficiently solving the surrogate problem using a multigrid method, our method delivers significant improvements in both convergence speed and reconstruction quality compared to conventional PIE techniques.


'''February 10, Yingda Li:''' In this talk, I will begin with a brief intro of my background, followed by a discussion of my journey to my current role as a Research Scientist/Machine Learning Engineer in industry. Finally, I will illustrate the day-to-day duties of a RS/MLE at Meta.  
'''April 11th, Ian McPherson (Johns-Hopkins):''' Nonsmooth convex optimization is a classically studied regime with a plethora of different optimization algorithms being developed in order to solve them. Of these methods, proximal bundle methods have been created and used within the Euclidean setting for decades - attempting to mimic the dynamics of the proximal point method. While practitioners have enjoyed very robust convergence results with respect to choice of parameters, it was not until the late 2020s that we have had theoretical results giving non-asymptotic guarantees - recovering optimal convergence rates. Within the past few years, the first Riemannian Proximal Bundle Methods have been proposed, again lacking non-asymptotic guarantees. Within this talk, we discuss how we are able to both generalize proposed methods and lift the non-asymptotic rates to the Riemannian setting. Moreover, we will do so without access to exponential maps or parallel transports. In addition, to our knowledge these are the first theoretical guarantees for non-smooth geodesically convex optimization in the Riemannian setting, without access to either exponential maps and parallel transports. The work presented is joint work with Mateo Diaz and Benjamin Grimmer.


'''February 17, Rebecca Gasper:''' There are so many careers in mathematics! Rebecca Gasper (Ph.D. Applied Mathematical and Computational Sciences, University of Iowa) decided to be a math professor by the end of her first calculus class. From tutoring through college and graduate school, preparation and luck, things fell into place. So what changed? She talks about her personal experience first in academia and then in corporate America, from pure math to data science, and gracefully changing her path. Plenty of time will be reserved for Q&A, so bring your questions about getting hired, workload, and culture in each “world.
'''April 25th, Weidong Ma (Univeristy of Pennsylvania)''': Testing the independence of random vectors is a fundamental problem across many scientific disciplines. In this talk, I will first introduce several widely used methods for independence testing, including distance covariance (DC), the Hilbert-Schmidt Independence Criterion (HSIC), and their applications. Most of these methods lack tractable asymptotic distributions under the null hypothesis (i.e., independence), making their use rely on computationally intensive procedures such as permutation tests or bootstrap methods.


'''February 24, Alisha Zachariah:''' Any choice of career path comes with its own set of tradeoffs. In my current role as a data scientist at Amazon, my team identifies which products Amazon Retail should carry on the basis of their long-term profitability, in the US and worldwide. In this presentation, I would like to talk candidly about the pros and cons of this professional path, from compensation to #techlayoffs and everything in between.
To address this, I will present our recent work aimed at reducing the computational cost of independence testing. We propose a modified HSIC test, termed HSICskb, which incorporates a bandwidth adjustment where one kernel’s bandwidth shrinks to zero as the sample size grows. We establish a Gaussian approximation result for our test statistic, which allows us to compute the p-value efficiently.


'''March 3, Niudun Wang''': Having to make a call could be stressful, especially when there's seemingly endless choices and the stake is high. I will be offering from my perspective the pitfalls and hinder sights as a puzzled graduate student that you might find relatable. El Psy Kongroo.
To assess statistical efficiency, we also conduct a local power analysis of the standard bootstrap-based HSIC test—an independently interesting contribution—and compare it with our HSICskb test. Finally, I will demonstrate the application of our method to real data, exploring the relationship between age and personal traits.


'''March 31, Qifan Chen:''' In this talk, we develop a new type of Runge-Kutta (RK) discontinuous Galerkin (DG) methods for solving hyperbolic conservation laws. Compared with the standard RKDG methods, the new methods feature improved compactness and allow simple boundary treatment. Limiters are applied only at the final stage for the control of spurious oscillations and further improves efficiency. Their connections with the Lax-Wendroff DG schemes and the ADER DG schemes are also investigated. Numerical examples are given to confirm that the new RKDG schemes are as accurate as standard RKDG methods, while being more compact and cost-effective, for certain problems including two-dimensional Euler systems of compressible gas dynamics.  
==Past Semesters==
==Past Semesters==
*[[SIAM Seminar Fall 2024|Fall 2024]]
*[https://wiki.math.wisc.edu/index.php/SIAM_Spring_2024 Spring 2024]
*[[SIAM Fall 2023|Fall 2023]]
*[[SIAM Spring 2023|Spring 2023]]
*[[SIAM Seminar Fall 2022|Fall 2022]]
*[[SIAM Seminar Fall 2022|Fall 2022]]
*[[Spring 2022 SIAM|Spring 2022]]
*[[Spring 2022 SIAM|Spring 2022]]

Latest revision as of 04:41, 21 April 2025


Spring 2025

Date Location Speaker Title
03/07 9th floor Ang Li Applying for postdocs and different industry jobs ... at the

same time

04/04 9th floor Borong Zhang Stochastic Multigrid Minimization for Ptychographic Phase Retrieval
04/11 903 Ian McPherson Convergence Rates for Riemannian Proximal Bundle Methods
04/25 903 Weidong Ma A topic in kernel based independence testing


Abstracts

March 7th, Ang Li (UW-Madison): I will share my experience with postdoc and industry job applications. This talk might be helpful for those who haven’t decided between academia and industry or are considering different paths within industry since I made my own decision quite late.

April 4th, Borong Zhang (UW-Madison): In this talk, we introduce a novel stochastic multigrid minimization method designed for ptychographic phase retrieval. By reformulating the inverse problem as the iterative minimization of a quadratic surrogate that majorizes the original objective function, our approach unifies a range of iterative algorithms, including first-order methods and the well-known Ptychographic Iterative Engine (PIE). By efficiently solving the surrogate problem using a multigrid method, our method delivers significant improvements in both convergence speed and reconstruction quality compared to conventional PIE techniques.

April 11th, Ian McPherson (Johns-Hopkins): Nonsmooth convex optimization is a classically studied regime with a plethora of different optimization algorithms being developed in order to solve them. Of these methods, proximal bundle methods have been created and used within the Euclidean setting for decades - attempting to mimic the dynamics of the proximal point method. While practitioners have enjoyed very robust convergence results with respect to choice of parameters, it was not until the late 2020s that we have had theoretical results giving non-asymptotic guarantees - recovering optimal convergence rates. Within the past few years, the first Riemannian Proximal Bundle Methods have been proposed, again lacking non-asymptotic guarantees. Within this talk, we discuss how we are able to both generalize proposed methods and lift the non-asymptotic rates to the Riemannian setting. Moreover, we will do so without access to exponential maps or parallel transports. In addition, to our knowledge these are the first theoretical guarantees for non-smooth geodesically convex optimization in the Riemannian setting, without access to either exponential maps and parallel transports. The work presented is joint work with Mateo Diaz and Benjamin Grimmer.

April 25th, Weidong Ma (Univeristy of Pennsylvania): Testing the independence of random vectors is a fundamental problem across many scientific disciplines. In this talk, I will first introduce several widely used methods for independence testing, including distance covariance (DC), the Hilbert-Schmidt Independence Criterion (HSIC), and their applications. Most of these methods lack tractable asymptotic distributions under the null hypothesis (i.e., independence), making their use rely on computationally intensive procedures such as permutation tests or bootstrap methods.

To address this, I will present our recent work aimed at reducing the computational cost of independence testing. We propose a modified HSIC test, termed HSICskb, which incorporates a bandwidth adjustment where one kernel’s bandwidth shrinks to zero as the sample size grows. We establish a Gaussian approximation result for our test statistic, which allows us to compute the p-value efficiently.

To assess statistical efficiency, we also conduct a local power analysis of the standard bootstrap-based HSIC test—an independently interesting contribution—and compare it with our HSICskb test. Finally, I will demonstrate the application of our method to real data, exploring the relationship between age and personal traits.

Past Semesters