SIAM Student Chapter Seminar: Difference between revisions

From UW-Math Wiki
Jump to navigation Jump to search
(Added talk details for Kristina Wheatman)
 
(73 intermediate revisions by 6 users not shown)
Line 3: Line 3:
*'''When:''' Fridays at 1 PM unless noted otherwise
*'''When:''' Fridays at 1 PM unless noted otherwise
*'''Where:''' 9th floor lounge (we will also broadcast the virtual talks on the 9th floor lounge with refreshments)
*'''Where:''' 9th floor lounge (we will also broadcast the virtual talks on the 9th floor lounge with refreshments)
*'''Organizers:''' [https://sites.google.com/wisc.edu/evan-sorensen Evan Sorensen], Jordan Radke, Peiyi Chen, and Yahui Qu
*'''Organizers:''' Yahui Qu, Peiyi Chen and Zaidan Wu
*'''Faculty advisers:''' [http://www.math.wisc.edu/~jeanluc/ Jean-Luc Thiffeault], [http://pages.cs.wisc.edu/~swright/ Steve Wright]  
*'''Faculty advisers:''' [http://www.math.wisc.edu/~jeanluc/ Jean-Luc Thiffeault], [http://pages.cs.wisc.edu/~swright/ Steve Wright]  
*'''To join the SIAM Chapter mailing list:''' email [mailto:siam-chapter+join@g-groups.wisc.edu siam-chapter+join@g-groups.wisc.edu].
*'''To join the SIAM Chapter mailing list:''' email [mailto:siam-chapter+join@g-groups.wisc.edu siam-chapter+join@g-groups.wisc.edu].
*'''Zoom link:''' https://uwmadison.zoom.us/j/99844791267?pwd=eUFwM25Hc2Roc1kvSzR3N2tVVlpLQT09
*'''Zoom link:''' https://uwmadison.zoom.us/j/97976615799?pwd=U2xFSERIcnR6M1Y1czRmTjQ1bTFJQT09
*'''Passcode: 641156'''
*'''Passcode: 281031'''


==Spring 2023==
== Fall 2024 ==


{| class="wikitable"
{| class="wikitable"
!Date (1 PM unless otherwise noted)
|+
!Date
!Location
!Location
!Speaker
!Speaker
!Title
!Title
|-
|-
|2/3
|10 AM 10/4
|911 Van Vleck
|Birge 346
|[https://people.math.wisc.edu/~tuncbilek/ Yunus Tuncbilek]
|Federica Ferrarese (University of Ferrara, Italy)
|Value Investing: Get Rich “Slowly”
|Control plasma instabilities via an external magnetic field: deterministic and uncertain approaches
|-
|-
|2/10
|11 AM 10/18
|Zoom and 911 Van Vleck
|9th floor
|[https://www.linkedin.com/in/yingda-li-4104a7124?challengeId=AQFQxySIWBsxMgAAAYYTi8ACor742OiZ6oRf5w6-TaPIveRNj979D962LC7qY-ASEcc9sv8e-VVmax3gTvdHfahdovW0VO5mNA&submissionId=a1568c15-bf17-4017-3d2e-8b511b5a9918&challengeSource=AgGfrEZn03tKYQAAAYYTjJTxARI38UhpqrEIfn1A7E-sJzqdBc2r7xIpNy1aVPM&challegeType=AgF-i00O8qT08wAAAYYTjJT1kR5S7gpLU3wEUl4aRYch3vq7_-r8uF0&memberId=AgFSiI49MqoqwQAAAYYTjJT4-S5JcSuNEh5taOVyqFcngQg&recognizeDevice=AgHi70ofns9_VwAAAYYTjJT-LiueIGhSYrNyPiir3rJMDLpFMtbW Yinda] Li
|Martin Guerra (UW-Madison)
|Industry talk
|Swarm-Based Gradient Descent Meets Simulated Annealing
|-
|-
|2/17
|12:30 PM 10/31
|911 Van Vleck
|VV 901
|[https://www.linkedin.com/in/rebecca-gasper/ Rebecca Gasper] ([https://www.epic.com/ Epic])
|Chuanqi Zhang (University of Technology Sydney)
|Two Careers in Mathematics, from Experience
|Faster isomorphism testing of p-groups of Frattini class-2
|-
|-
|2/24
|11/8
|Zoom and 911 Van Vleck
|9th floor
|[https://www.linkedin.com/in/alishazachariah/ Alisha Zachariah]
|Borong Zhang (UW-Madison)
|No Free Lunches: what’s your tradeoff?
|Solving the Inverse Scattering Problem: Leveraging Symmetries for Machine Learning
|-
|-
|3/3
|11/15
|Zoom and 911 Van Vleck
|9th floor
|Niudun Wang
(zoom)
|Industry talk
|Yantao Wu (Johns Hopkins University)
|Conditional Regression on Nonlinear Variable Model
|-
|-
|3/10
|
|Zoom and 911 Van Vleck
|
|[https://www.linkedin.com/in/kristina-sorensen-wheatman-233124127/ Kristina Wheatman] ([https://www.esm.psu.edu/research/centers-and-institutes/applied-research-lab.aspx Penn State Applied Research Lab])
|
|Happy Accidents: Finding the Heuristic to an Optimal Assignment Problem
|
|-
|-
|3/31
|
|Zoom and 911 Van Vleck
|
|Qifan Chen(https://qifan-chen.github.io)
|
|The Runge–Kutta discontinuous Galerkin method with compact stencils for hyperbolic conservation laws
|
|-
|-
|4/7
|
|Zoom and 911 Van Vleck
|
|Eza [https://www.linkedin.com/in/enkhzaya-enkhtaivan-20a15222b/ Enkhtaivan]
|
|Industry talk
|
|}
|}


==Abstracts==
==Abstracts==
'''October 4th, Federica Ferrarese (University of Ferrara, Italy)''': The study of the problem of plasma confinement in huge devices, such as for example Tokamaks and Stellarators, has attracted a lot of attention in recent years. Strong magnetic fields in these systems can lead to instabilities, resulting in vortex formation. Due to the extremely high temperatures in plasma fusion, physical materials cannot be used for confinement, necessitating the use of external magnetic fields to control plasma density. This approach involves studying the evolution of plasma, made up of numerous particles, using the Vlasov-Poisson equations. In the first part of the talk, the case without uncertainty is explored. Particle dynamics are simulated using the Particle-in-Cell (PIC) method, known for its ability to capture kinetic effects and self-consistent interactions. The goal is to derive an instantaneous feedback control that forces the plasma density to achieve a desired distribution. Various numerical experiments are presented to validate the results. In the second part, uncertainty is introduced into the system, leading to the development of a different control strategy. This method is designed to steer the plasma towards a desired configuration even in the presence of uncertainty. The presentation concludes with a comparison of the two control strategies, supported by various numerical experiments.


'''February 3, Yunus Tuncbilek:''' I will talk about value investing and why, in many ways, mathematicians are better suited to be value investors than the general public or even the institutional investors. The talk should be informative and enjoyable for any person who wants to increase their income over a long period of time without doing much work.
'''October 18th, Martin Guerra (UW-Madison)''': In generic non-convex optimization, one needs to be able to pull samples out of local optimal points to achieve global optimization. Two common strategies are deployed: adding stochasticity to samples such as Brownian motion, as is done in simulated annealing (SA), and employing a swarm of samples to explore the whole landscape, as is done in Swarm-Based Gradient Descent (SBGD). The two strategies have severe drawbacks but complement each other on their strengths. SA fails in the accuracy sense, i.e., finding the exact optimal point, but succeeds in always being able to get close, while SBGD fails in the probability sense, i.e., it has non-trivial probability to fail, but if succeeds, can find the exact optimal point. We propose to combine the strength of the two and develop a swarm-based stochastic gradient method with samples automatically adjusting their annealing. Using mean-field analysis and long-time behavior PDE tools, we can prove the method to succeed in both the accuracy sense and the probability sense. Numerical examples verify these theoretical findings.


'''February 10, Yingda Li:''' In this talk, I will begin with a brief intro of my background, followed by a discussion of my journey to my current role as a Research Scientist/Machine Learning Engineer in industry. Finally, I will illustrate the day-to-day duties of a RS/MLE at Meta.  
'''October 31st, Chuanqi Zhang''' (University of Technology Sydney): The finite group isomorphism problem asks to decide whether two finite groups of order N are isomorphic. Improving the classical $N^{O(\log N)}$-time algorithm for group isomorphism is a long-standing open problem. It is generally regarded that p-groups of class 2 and exponent p form a bottleneck case for group isomorphism in general. The recent breakthrough by Sun (STOC '23) presents an $N^{O((\log N)^{5/6})}$-time algorithm for this group class. Our work sharpens the key technical ingredients in Sun's algorithm and further improves Sun's result by presenting an $N^{\tilde O((\log N)^{1/2})}$-time algorithm for this group class. Besides, we also extend the result to the more general p-groups of Frattini class-2, which includes non-abelian 2-groups. In this talk, I will present the problem background and our main algorithm in detail, and introduce some connections with other research topics. For example, one intriguing connection is with the maximal and non-commutative ranks of matrix spaces, which have recently received considerable attention in algebraic complexity and computational invariant theory. Results from the theory of Tensor Isomorphism complexity class (Grochow--Qiao, SIAM J. Comput. '23) are utilized to simplify the algorithm and achieve the extension to p-groups of Frattini class-2.  


'''February 17, Rebecca Gasper:''' There are so many careers in mathematics! Rebecca Gasper (Ph.D. Applied Mathematical and Computational Sciences, University of Iowa) decided to be a math professor by the end of her first calculus class. From tutoring through college and graduate school, preparation and luck, things fell into place. So what changed? She talks about her personal experience first in academia and then in corporate America, from pure math to data science, and gracefully changing her path. Plenty of time will be reserved for Q&A, so bring your questions about getting hired, workload, and culture in each “world.
'''November 8th, Borong Zhang''' (UW-Madison): The inverse scattering problem—reconstructing the properties of an unknown medium by probing it with waves and measuring the medium's response at the boundary—is fundamental in physics and engineering. This talk will focus on how leveraging the symmetries inherent in this problem can significantly enhance machine learning methods for its solution. By incorporating these symmetries into both deterministic neural network architectures and probabilistic frameworks like diffusion models, we achieve more accurate and computationally efficient reconstructions. This symmetry-driven approach reduces the complexity of the models and improves their performance, illustrating how physical principles can inform and strengthen machine learning techniques. Applications demonstrating these benefits will be briefly discussed.  


'''February 24, Alisha Zachariah:''' Any choice of career path comes with its own set of tradeoffs. In my current role as a data scientist at Amazon, my team identifies which products Amazon Retail should carry on the basis of their long-term profitability, in the US and worldwide. In this presentation, I would like to talk candidly about the pros and cons of this professional path, from compensation to #techlayoffs and everything in between.
'''November 15th, Yantao Wu''' (Johns Hopkins): We consider the problem of estimating the intrinsic structure of composite functions of the type $\mathbb{E} [Y|X] = f(\Pi_\gamma X) $ where $\Pi_\gamma:\mathbb{R}^d\to\mathbb{R}^1$ is the closest point projection operator onto some unknown smooth curve $\gamma: [0, L]\to \mathbb{R}^d$ and  $f: \mathbb{R}^1\to \mathbb{R}^1$ is some unknown  {\it link} function. This model is the generalization of the single-index model where $\mathbb{E}[Y|X]=f(\langle v, X\rangle)$ for some unknown {\it index} vector $v\in\mathbb{S}^{d-1}$. On the other hand, this model is a particular case of function composition model where $\mathbb{E}[Y|X] = f(g(x))$ for some unknown multivariate function $g:\mathbb{R}^d\to\mathbb{R}$. In this paper, we propose an algorithm based on conditional regression and show that under some assumptions restricting the complexity of curve $\gamma$, our algorithm can achieve the one-dimensional optimal minimax rate, plus a curve approximation error bounded by $\mathcal{O}(\sigma_\zeta^2)$. We also perform numerical tests to verify that our algorithm is robust, in the sense that even without some assumptions, the mean squared error can still achieve $\mathcal{O}(\sigma_\zeta^2)$.  
 
'''March 3, Niudun Wang''': Having to make a call could be stressful, especially when there's seemingly endless choices and the stake is high. I will be offering from my perspective the pitfalls and hinder sights as a puzzled graduate student that you might find relatable. El Psy Kongroo.
 
'''March 10, Kristina Wheatman:''' Do you ever feel like all your major life decisions keep you running in circles? In Happy Accidents, I discuss ideas for how to maneuver through the chaos and confusion of “grey” crossroads and unpleasant detours within mathematics and academia, especially when “black” and “white” options seem out of reach or prove to be disappointing. I share how I am able to build my own customized career in research by allowing myself some grace and flexibility. Ultimately, I am continuously finding ways to improve my life’s heuristic by acknowledging the “perfect optimal” exists solely to motivate us on our mathematical journey.  
 
'''March 31, Qifan Chen:''' In this talk, we develop a new type of Runge-Kutta (RK) discontinuous Galerkin (DG) methods for solving hyperbolic conservation laws. Compared with the standard RKDG methods, the new methods feature improved compactness and allow simple boundary treatment. Limiters are applied only at the final stage for the control of spurious oscillations and further improves efficiency. Their connections with the Lax-Wendroff DG schemes and the ADER DG schemes are also investigated. Numerical examples are given to confirm that the new RKDG schemes are as accurate as standard RKDG methods, while being more compact and cost-effective, for certain problems including two-dimensional Euler systems of compressible gas dynamics.  


==Past Semesters==
==Past Semesters==
*[https://wiki.math.wisc.edu/index.php/SIAM_Spring_2024 Spring 2024]
*[[SIAM Fall 2023|Fall 2023]]
*[[SIAM Spring 2023|Spring 2023]]
*[[SIAM Seminar Fall 2022|Fall 2022]]
*[[SIAM Seminar Fall 2022|Fall 2022]]
*[[Spring 2022 SIAM|Spring 2022]]
*[[Spring 2022 SIAM|Spring 2022]]

Latest revision as of 22:40, 13 November 2024


Fall 2024

Date Location Speaker Title
10 AM 10/4 Birge 346 Federica Ferrarese (University of Ferrara, Italy) Control plasma instabilities via an external magnetic field: deterministic and uncertain approaches
11 AM 10/18 9th floor Martin Guerra (UW-Madison) Swarm-Based Gradient Descent Meets Simulated Annealing
12:30 PM 10/31 VV 901 Chuanqi Zhang (University of Technology Sydney) Faster isomorphism testing of p-groups of Frattini class-2
11/8 9th floor Borong Zhang (UW-Madison) Solving the Inverse Scattering Problem: Leveraging Symmetries for Machine Learning
11/15 9th floor

(zoom)

Yantao Wu (Johns Hopkins University) Conditional Regression on Nonlinear Variable Model

Abstracts

October 4th, Federica Ferrarese (University of Ferrara, Italy): The study of the problem of plasma confinement in huge devices, such as for example Tokamaks and Stellarators, has attracted a lot of attention in recent years. Strong magnetic fields in these systems can lead to instabilities, resulting in vortex formation. Due to the extremely high temperatures in plasma fusion, physical materials cannot be used for confinement, necessitating the use of external magnetic fields to control plasma density. This approach involves studying the evolution of plasma, made up of numerous particles, using the Vlasov-Poisson equations. In the first part of the talk, the case without uncertainty is explored. Particle dynamics are simulated using the Particle-in-Cell (PIC) method, known for its ability to capture kinetic effects and self-consistent interactions. The goal is to derive an instantaneous feedback control that forces the plasma density to achieve a desired distribution. Various numerical experiments are presented to validate the results. In the second part, uncertainty is introduced into the system, leading to the development of a different control strategy. This method is designed to steer the plasma towards a desired configuration even in the presence of uncertainty. The presentation concludes with a comparison of the two control strategies, supported by various numerical experiments.

October 18th, Martin Guerra (UW-Madison): In generic non-convex optimization, one needs to be able to pull samples out of local optimal points to achieve global optimization. Two common strategies are deployed: adding stochasticity to samples such as Brownian motion, as is done in simulated annealing (SA), and employing a swarm of samples to explore the whole landscape, as is done in Swarm-Based Gradient Descent (SBGD). The two strategies have severe drawbacks but complement each other on their strengths. SA fails in the accuracy sense, i.e., finding the exact optimal point, but succeeds in always being able to get close, while SBGD fails in the probability sense, i.e., it has non-trivial probability to fail, but if succeeds, can find the exact optimal point. We propose to combine the strength of the two and develop a swarm-based stochastic gradient method with samples automatically adjusting their annealing. Using mean-field analysis and long-time behavior PDE tools, we can prove the method to succeed in both the accuracy sense and the probability sense. Numerical examples verify these theoretical findings.

October 31st, Chuanqi Zhang (University of Technology Sydney): The finite group isomorphism problem asks to decide whether two finite groups of order N are isomorphic. Improving the classical $N^{O(\log N)}$-time algorithm for group isomorphism is a long-standing open problem. It is generally regarded that p-groups of class 2 and exponent p form a bottleneck case for group isomorphism in general. The recent breakthrough by Sun (STOC '23) presents an $N^{O((\log N)^{5/6})}$-time algorithm for this group class. Our work sharpens the key technical ingredients in Sun's algorithm and further improves Sun's result by presenting an $N^{\tilde O((\log N)^{1/2})}$-time algorithm for this group class. Besides, we also extend the result to the more general p-groups of Frattini class-2, which includes non-abelian 2-groups. In this talk, I will present the problem background and our main algorithm in detail, and introduce some connections with other research topics. For example, one intriguing connection is with the maximal and non-commutative ranks of matrix spaces, which have recently received considerable attention in algebraic complexity and computational invariant theory. Results from the theory of Tensor Isomorphism complexity class (Grochow--Qiao, SIAM J. Comput. '23) are utilized to simplify the algorithm and achieve the extension to p-groups of Frattini class-2.

November 8th, Borong Zhang (UW-Madison): The inverse scattering problem—reconstructing the properties of an unknown medium by probing it with waves and measuring the medium's response at the boundary—is fundamental in physics and engineering. This talk will focus on how leveraging the symmetries inherent in this problem can significantly enhance machine learning methods for its solution. By incorporating these symmetries into both deterministic neural network architectures and probabilistic frameworks like diffusion models, we achieve more accurate and computationally efficient reconstructions. This symmetry-driven approach reduces the complexity of the models and improves their performance, illustrating how physical principles can inform and strengthen machine learning techniques. Applications demonstrating these benefits will be briefly discussed.

November 15th, Yantao Wu (Johns Hopkins): We consider the problem of estimating the intrinsic structure of composite functions of the type $\mathbb{E} [Y|X] = f(\Pi_\gamma X) $ where $\Pi_\gamma:\mathbb{R}^d\to\mathbb{R}^1$ is the closest point projection operator onto some unknown smooth curve $\gamma: [0, L]\to \mathbb{R}^d$ and  $f: \mathbb{R}^1\to \mathbb{R}^1$ is some unknown  {\it link} function. This model is the generalization of the single-index model where $\mathbb{E}[Y|X]=f(\langle v, X\rangle)$ for some unknown {\it index} vector $v\in\mathbb{S}^{d-1}$. On the other hand, this model is a particular case of function composition model where $\mathbb{E}[Y|X] = f(g(x))$ for some unknown multivariate function $g:\mathbb{R}^d\to\mathbb{R}$. In this paper, we propose an algorithm based on conditional regression and show that under some assumptions restricting the complexity of curve $\gamma$, our algorithm can achieve the one-dimensional optimal minimax rate, plus a curve approximation error bounded by $\mathcal{O}(\sigma_\zeta^2)$. We also perform numerical tests to verify that our algorithm is robust, in the sense that even without some assumptions, the mean squared error can still achieve $\mathcal{O}(\sigma_\zeta^2)$.

Past Semesters