Probability Seminar: Difference between revisions

From UW-Math Wiki
Jump to navigation Jump to search
No edit summary
No edit summary
 
(74 intermediate revisions by 8 users not shown)
Line 1: Line 1:
__NOTOC__
__NOTOC__
[[Probability | Back to Probability Group]]
[[Probability | Back to Probability Group]]
* '''When''': Thursdays at 2:30 pm
* '''Where''': 901 Van Vleck Hall
* '''Organizers''': Hanbaek Lyu, Tatyana Shcherbyna, David Clancy
* '''To join the probability seminar mailing list:''' email probsem+subscribe@g-groups.wisc.edu.
* '''To subscribe seminar lunch announcements:''' email lunchwithprobsemspeaker+subscribe@g-groups.wisc.edu


[[Past Seminars]]
[[Past Seminars]]


= Spring 2023 =


<b>Thursdays at 2:30 PM either in 901 Van Vleck Hall or on Zoom</b>  
= Fall 2024 =
<b>Thursdays at 2:30 PM either in 901 Van Vleck Hall or on Zoom</b>


We usually end for questions at 3:20 PM.
We usually end for questions at 3:20 PM.


[https://uwmadison.zoom.us/j/91828707031?pwd=YUJXMUJkMDlPR0VRdkRCQVJtVndIdz09 ZOOM LINK. Valid only for online seminars.]
== September 5, 2024: ==
No seminar
 
== September 12, 2024: Hongchang Ji (UW-Madison) ==
'''Spectral edge of non-Hermitian random matrices'''
 
We report recent progress on spectra of so-called deformed i.i.d. matrices. They are square non-Hermitian random matrices of the form $A+X$ where $X$ has centered i.i.d. entries and $A$ is a deterministic bias, and $A$ and $X$ are on the same scale so that their contributions to the spectrum of $A+X$ are comparable. Under this setting, we present two recent results concerning universal patterns arising in eigenvalue statistics of $A+X$ around its boundary, on macroscopic and microscopic scales. The first result shows that the macroscopic eigenvalue density of $A+X$ typically has a jump discontinuity around the boundary of its support, which is a distinctive feature of $X$ by the \emph{circular law}. The second result is edge universality for deformed non-Hermitian matrices; it shows that the local eigenvalue statistics of $A+X$ around a typical (jump) boundary point is universal, i.e., matches with those of a Ginibre matrix $X$ with i.i.d. standard Gaussian entries.
 
Based on joint works with A. Campbell, G. Cipolloni, and L. Erd\H{o}s.
 
 
== September 19, 2024: Miklos Racz (Northwestern) ==
'''The largest common subtree of uniform attachment trees'''
 
Consider two independent uniform attachment trees with n nodes each -- how large is their largest common subtree? Our main result gives a lower bound of n^{0.83}. We also give some upper bounds and bounds for general random tree growth models. This is based on joint work with Johannes Bäumler, Bas Lodewijks, James Martin, Emil Powierski, and Anirudh Sridhar.
 
== September 26, 2024: Dmitry Krachun (Princeton) ==
'''A glimpse of universality in critical planar lattice models'''
 
Abstract: Many models of statistical mechanics are defined on a lattice, yet they describe behaviour of objects in our seemingly isotropic world. It is then natural to ask why, in the small mesh size limit, the directions of the lattice disappear. Physicists' answer to this question is partially given by the Universality hypothesis, which roughly speaking states that critical properties of a physical system do not depend on the lattice or fine properties of short-range interactions but only depend on the spatial dimension and the symmetry of the possible spins. Justifying the reasoning behind the universality hypothesis mathematically seems virtually impossible and so other ideas are needed for a rigorous derivation of universality even in the simplest of setups.
 
In this talk I will explain some ideas behind the recent result which proves rotational invariance of the FK-percolation model. In doing so, we will see how rotational invariance is related to universality among a certain one-dimensional family of planar lattices and how the latter can be proved using exact integrability of the six-vertex model using Bethe ansatz.
 
Based on joint works with Hugo Duminil-Copin, Karol Kozlowski, Ioan Manolescu, Mendes Oulamara, and Tatiana Tikhonovskaia.
 
== October 3, 2024: Joshua Cape (UW-Madison) ==
'''A new random matrix: motivation, properties, and applications'''
 
In this talk, we introduce and study a new random matrix whose entries are dependent and discrete valued. This random matrix is motivated by problems in multivariate analysis and nonparametric statistics. We establish its asymptotic properties and provide comparisons to existing results for independent entry random matrix models. We then apply our results to two problems: (i) community detection, and (ii) principal submatrix localization. Based on joint work with Jonquil Z. Liao.
 
== October 10, 2024: Midwest Probability Colloquium ==
N/A
 
== October 17, 2024: Kihoon Seong (Cornell) ==
'''Gaussian fluctuations of focusing Φ^4 measure around the soliton manifold'''
 
I will explain the central limit theorem for the focusing Φ^4 measure in the infinite volume limit. The focusing Φ^4 measure, an invariant Gibbs measure for the nonlinear Schrödinger equation, was first studied by Lebowitz, Rose, and Speer (1988), and later extended by Bourgain (1994), Brydges and Slade (1996), and Carlen, Fröhlich, and Lebowitz (2016).
 
Rider previously showed that this measure is strongly concentrated around a family of minimizers of the associated Hamiltonian, known as the soliton manifold. In this talk, I will discuss the fluctuations around this soliton manifold. Specifically, we show that the scaled field under the focusing Φ^4 measure converges to white noise in the infinite volume limit, thus identifying the next-order fluctuations, as predicted by Rider.
 
This talk is based on joint work with Philippe Sosoe (Cornell).
 
== October 24, 2024: Jacob Richey (Alfred Renyi Institute) ==
'''Stochastic abelian particle systems and self-organized criticality'''
 
Abstract: Activated random walk (ARW) is an 'abelian' particle system that conjecturally exhibits complex behaviors which were first described by physicists in the 1990s, namely self organized criticality and hyperuniformity. I will discuss recent results for ARW and the stochastic sandpile (a related model) on Z and other graphs, plus many open questions.
 
== October 31, 2024: David Clancy (UW-Madison) ==
'''Likelihood landscape on a known phylogeny'''
 
Abstract: Over time, ancestral populations evolve to become separate species. We can represent this history as a tree with edge lengths where the leaves are the modern-day species. If we know the precise topology of the tree (i.e. the precise evolutionary relationship between all the species), then we can imagine traits (their presence or absence) being passed down according to a symmetric 2-state continuous-time Markov chain. The branch length becomes the probability a parent species has a trait while the child species does not. This length is unknown, but researchers have observed they can get pretty good estimates using maximum likelihood estimation and only the leaf data despite the fact that the number of critical points for the log-likelihood grows exponentially fast in the size of the tree. In this talk, I will discuss why this MLE approach works by showing that the population log-likelihood is strictly concave and smooth in a neighborhood around the true branch length parameters and the size.
 
This talk is based on joint work with Hanbaek Lyu, Sebastien Roch and Allan Sly.
 
== November 7, 2024: Zoe Huang (UNC Chapel Hill) ==
'''Cutoff for Cayley graphs of nilpotent groups'''
 
Abstract: Abstract:  We consider the random Cayley graphs of a sequence of finite nilpotent groups of diverging sizes $G=G(n)$, whose ranks and nilpotency classes are uniformly bounded. For some $k=k(n)$ such that $1\ll\log k \ll \log |G|$, we pick a random set of generators $S=S(n)$ by sampling $k$ elements $Z_1,\ldots,Z_k$ from $G$ uniformly at random with replacement, and set $S:=\{Z_j^{\pm 1}:1 \le j\le k \}$. We show that the simple random walk on Cay$(G,S)$ exhibits cutoff with high probability. Some of our results apply to a general set of generators. Namely, we show that there is a constant $c>0$, depending only on the rank and the nilpotency class of $G$, such that for all symmetric sets of generators $S$ of size at most $ \frac{c\log |G|}{\log \log |G|}$, the spectral gap and the $\varepsilon$-mixing time of the simple random walk $X=(X_t)_{t\geq 0}$ on Cay$(G,S)$ are asymptotically the same as those of the projection of $X$ to the abelianization of $G$, given by $[G,G]X_t$. In particular, $X$ exhibits cutoff if and only if its projection does. Based on joint work with Jonathan Hermon.
 
== November 14, 2024: Nabarun Deb (University of Chicago) ==
Mean-Field fluctuations in Ising models and posterior prediction intervals in low signal-to-noise ratio regimes
 
Ising models have become central in probability, statistics, and machine learning. They naturally appear in the posterior distribution of regression coefficients under the linear model $Y = X\beta + \epsilon$, where $\epsilon \sim N(0, \sigma^2 I_n)$. This talk explores fluctuations of specific linear statistics under the Ising model, with a focus on applications in Bayesian linear regression.
 
In the first part, we examine Ising models on "dense regular" graphs and characterize the limiting distribution of average magnetization across various temperature and magnetization regimes, extending previous results beyond the Curie-Weiss (complete graph) case. In the second part, we analyze posterior prediction intervals for linear statistics in low signal-to-noise ratio (SNR) scenarios, also known as the contiguity regime. Here, unlike standard Bernstein-von Mises results, the limiting distributions are highly sensitive to the choice of prior. We illustrate this dependency by presenting limiting laws under both correctly specified and misspecified priors.
 
This talk is based on joint work with Sumit Mukherjee and Seunghyun Li.
 
== November 21, 2024: Reza Gheissari (Northwestern) ==
'''Wetting and pre-wetting in (2+1)D solid-on-solid interfaces'''
 
The (d+1)D-solid-on-solid model is a simple model of integer-valued height functions that approximates the low-temperature interface of an Ising model. When $d\ge 2$, with zero-boundary conditions, at low temperatures the surface is localized about height $0$, but when constrained to take only non-negative values entropic repulsion pushes it to take typical heights of $O(\log n)$.  I will describe the mechanism of entropic repulsion, and present results on how the picture changes when one introduces a competing force trying to keep the interface localized (either an external field or a reward for points where the height is exactly zero). Along the way, I will outline rich predictions for the shapes of level curves, and for metastability phenomena in the Glauber dynamics. Based on joint work with Eyal Lubetzky and Joseph Chen.
 
== November 28, 2024: Thanksgiving ==
No seminar
 
== December 5, 2024: Erik Bates (NC State) ==
 
'''Parisi formulas in multi-species and vector spin glass models'''
 
The expression "Parisi formula" refers to a variational formula postulated by Parisi in 1980 to give the limiting free energy of the Sherrington--Kirkpatrick (SK) spin glass.  The SK model was originally conceived as a mean-field description for disordered magnetism, and has since become a mathematical prototype for frustrated disordered systems and high-complexity functions.  In recent years, there has been an effort to extend the Parisi framework to various generalizations of the SK model, raising new physical questions met with fresh mathematical challenges.  In this talk, I will share some developments in this evolving story.  Based on joint works with Leila Sloman and Youngtak Sohn.
 
 
 
= Spring 2024 =
<b>Thursdays at 2:30 PM either in 901 Van Vleck Hall or on Zoom</b>
 
We usually end for questions at 3:20 PM.
 
== January 25, 2024: Tatyana Shcherbina (UW-Madison) ==
'''Characteristic polynomials of sparse non-Hermitian random matrices'''
 
We consider the asymptotic local behavior of the second correlation functions of the characteristic polynomials of sparse non-Hermitian random matrices $X_n$ whose entries have the form $x_{jk}=d_{jk}w_{jk}$ with iid complex standard Gaussian $w_{jk}$ and normalized iid Bernoulli$(p)$ $d_{jk}$.  If $p\to\infty$, the local asymptotic behavior of the second correlation function of characteristic polynomials near $z_0\in \mathbb{C}$ coincides with those for  Ginibre ensemble of non-Hermitian matrices with iid Gaussian entries: it converges to a determinant of the Ginibre kernel in the bulk $|z_0|<1$, and it is factorized if $|z_0|>1$. It appears, however, that for the finite $p>0$, the behavior is different and it exhibits the transition between three different regimes depending on values $p$ and $|z_0|^2$.  This is the joint work with Ie. Afanasiev.  
 
== February 1, 2024: [https://lopat.to/index.html Patrick Lopatto (Brown)] ==
'''Optimal rigidity and maximum of the characteristic polynomial of Wigner matrices'''
 
We consider two related questions about the extremal statistics of Wigner matrices (random symmetric matrices with independent entries). First, how much can their eigenvalues fluctuate? It is known that the eigenvalues of such matrices display repulsive interactions, which confine them near deterministic locations. We provide optimal estimates for this “rigidity” phenomenon. Second, what is the behavior of the maximum of the characteristic polynomial? This is motivated by a conjecture of Fyodorov–Hiary–Keating on the maxima of logarithmically correlated fields, and we will present the first results on this question for Wigner matrices. This talk is based on joint work with Paul Bourgade and Ofer Zeitouni.
== February 8, 2024: Benoit Dagallier (NYU), online talk: https://uwmadison.zoom.us/j/95724628357 ==
'''Stochastic dynamics and the Polchinski equation'''
 
I will discuss a general framework to obtain large scale information in statistical mechanics and field theory models. The basic, well known idea is to build a dynamics that samples from the model and control its long time behaviour. There are many ways to build such a dynamics, the Langevin dynamics being a typical example. In this talk I will introduce another, the Polchinski dynamics, based on renormalisation group ideas. The dynamics is parametrised by a parameter representing a certain notion of scale in the model under consideration. The Polchinski dynamics has a number of interesting properties that make it well suited to study large-dimensional models. It is also known under the name stochastic localisation. I will mention a number of recent applications of this dynamics, in particular to prove functional inequalities via a generalisation of Bakry and Emery's convexity-based argument. The talk is based on joint work with Roland Bauerschmidt and Thierry Bodineau and the recent review paper <nowiki>https://arxiv.org/abs/2307.07619</nowiki> .


If you would like to sign up for the email list to receive seminar announcements then please join [https://groups.google.com/a/g-groups.wisc.edu/forum/#!forum/probsem our group].
== February 15, 2024: [https://math.temple.edu/~tue86896/ Brian Rider (Temple)] ==
'''A matrix model for conditioned Stochastic Airy'''


There are three basic flavors of local limit theorems in random matrix theory, connected to the spectral bulk and the so-called soft and hard edges. There also abound a collection of more exotic limits which arise in models that posses degenerate (or “non-regular”) points in their equilibrium measure.  What is more, there is typically a natural double scaling about these non-regular points, producing limit laws that transition between the more familiar basic flavors. Here I will describe a general beta matrix model for which the appropriate double scaling limit is the Stochastic Airy Operator, conditioned on having no eigenvalues below a fixed level.  I know of no other random matrix double scaling fully characterized outside of beta = 2. This is work in progress with J. Ramirez (University of Costa Rica).


== January 26, 2023, in person: [https://sites.google.com/wisc.edu/evan-sorensen?pli=1 Evan Sorensen] (UW-Madison)    ==
== February 22, 2024: No talk this week ==
'''The stationary horizon as a universal object for KPZ models'''
'''TBA'''
The last 5-10 years has seen remarkable progress in constructing the central objects of the KPZ universality class, namely the KPZ fixed point and directed landscape. In this talk, I will discuss a third central object known as the stationary horizon (SH). The SH is a coupling of Brownian motions with drifts, indexed by the real line, and it describes the unique coupled invariant measures for the directed landscape. I will talk about how the SH appears as the scaling limit of several models, including Busemann processes in last-passage percolation and the TASEP speed process. I will also discuss how the SH helps to describe the collection of infinite geodesics in all directions for the directed landscape. Based on joint work with Timo Seppäläinen and Ofer Busani.


== February 2, 2023, in person: [https://mathjinsukim.com/ Jinsu Kim] (POSTECH)   ==
== February 29, 2024: Zongrui Yang (Columbia) ==
'''Fast and slow mixing of continuous-time Markov chains with polynomial rates'''
'''Stationary measures for integrable models with two open boundaries'''
Continuous-time Markov chains on infinite positive integer grids with polynomial rates are often used in modeling queuing systems, molecular counts of small-size biological systems, etc. In this talk, we will discuss continuous-time Markov chains that admit either fast or slow mixing behaviors. For a positive recurrent continuous-time Markov chain, the convergence rate to its stationary distribution is typically investigated with the Lyapunov function method and canonical path method. Recently, we discovered examples that do not lend themselves easily to analysis via those two methods but are shown to have either fast mixing or slow mixing with our new technique. The main ideas of the new methodologies are presented in this talk along with their applications to stochastic biochemical reaction network theory.


== February 9, 2023, in person: [https://www.math.tamu.edu/~jkuan/ Jeffrey Kuan] (Texas A&M)    ==
We present two methods to study the stationary measures of integrable systems with two open boundaries. The first method is based on Askey-Wilson signed measures, which is illustrated for the open asymmetric simple exclusion process and the six-vertex model on a strip. The second method is based on two-layer Gibbs measures and is illustrated for the geometric last-passage percolation and log-gamma polymer on a strip. This talk is based on joint works with Yizao Wang, Jacek Wesolowski, Guillaume Barraquand and Ivan Corwin.
'''Shift invariance for the multi-species q-TAZRP on the infinite line'''


We prove a shift--invariance for the multi-species q-TAZRP (totally asymmetric zero range process) on the infinite line. Similar-looking results had appeared in works by [Borodin-Gorin-Wheeler] and [Galashin], using integrability, but are on the quadrant. The proof in this talk relies instead on a combinatorial approach, in which the state space is generalized to a poset, and the totally asymmetric process is generalized to a monotone process on a poset. The continuous-time process is decomposed into its discrete embedded Markov chain and its exponential holding times, and the shift-invariance is proved using explicit contour integral formulas. Open problems about multi-species ASEP will be discussed as well.
== March 7, 2024: Atilla Yilmaz (Temple) ==
'''Stochastic homogenization of nonconvex Hamilton-Jacobi equations'''


== February 16, 2023, in person: [http://math.columbia.edu/~milind/ Milind Hegde] (Columbia)   ==
After giving a self-contained introduction to the qualitative homogenization of Hamilton-Jacobi (HJ) equations in stationary ergodic media in spatial dimension ''d ≥ 1'', I will focus on the case where the Hamiltonian is nonconvex, and highlight some interesting differences between: (i) periodic vs. truly random media; (ii) ''d = 1'' vs. ''d ≥ 2''; and (iii) inviscid vs. viscous HJ equations.
'''Understanding the upper tail behaviour of the KPZ equation via the tangent method'''


The Kardar-Parisi-Zhang (KPZ) equation is a canonical non-linear stochastic PDE believed to describe the evolution of a large number of planar stochastic growth models which make up the KPZ universality class. A particularly important observable is the one-point distribution of its analogue of the fundamental solution, which has featured in much of its recent study. However, in spite of significant recent progress relying on explicit formulas, a sharp understanding of its upper tail behaviour has remained out of reach. In this talk we will discuss a geometric approach, related to the tangent method introduced by Colomo-Sportiello and rigorously implemented by Aggarwal for the six-vertex model. The approach utilizes a Gibbs resampling property of the KPZ equation and yields a sharp understanding for a large class of initial data.  
== March 14, 2024: Eric Foxall (UBC Okanagan) ==
'''Some uses of ordered representations in finite-population exchangeable ancestry models''' (ArXiv: https://arxiv.org/abs/2104.00193)


== February 23, 2023, in person: [https://sites.math.rutgers.edu/~sc2518/ Swee Hong Chan] (Rutgers)    ==
For a population model that encodes parent-child relations, an ordered representation is a partial or complete labelling of individuals, in order of their descendants’ long-term success in some sense, with respect to which the ancestral structure is more tractable. The two most common types are the lookdown and the spinal decomposition(s), used respectively to study exchangeable models and Markov branching processes. We study the lookdown for an exchangeable model with a fixed, arbitrary sequence of natural numbers, describing population size over time. We give a simple and intuitive construction of the lookdown via the complementary notions of forward and backward neutrality. We discuss its connection to the spinal decomposition in the setting of Galton-Watson trees. We then use the lookdown to give sufficient conditions on the population sequence for the existence of a unique infinite line of descent. For a related but slightly weaker property, takeover, the necessary and sufficient conditions are more easily expressed: infinite time passes on the coalescent time scale. The latter property is also related to the following question of identifiability: under what conditions can some or all of the lookdown labelling be determined by the unlabelled lineages? A reasonably good answer can be obtained by comparing extinction times and relative sizes of lineages.
'''Log-concavity and cross product inequalities in order theory'''


Given a finite poset that is not completely ordered, is it always possible find two elements x and y, such that the probability that x is less than y in the random linear extension of the poset, is bounded away from 0 and 1? Kahn-Saks gave an affirmative answer and showed that this probability falls between 3/11 (0.273) and 8/11 (0.727). The currently best known bound is 0.276 and 0.724 by Brightwell-Felsner-Trotter, and it is believed that the optimal bound should be 1/3 and 2/3, also known as the 1/3-2/3 Conjecture. Most notably, log-concave and cross product inequalities played the central role in deriving both bounds. In this talk we will discuss various generalizations of these results together with related open problems. This talk is joint work with Igor Pak and Greta Panova, and is intended for the general audience.
== March 21, 2024: Semon Rezchikov (Princeton) ==
'''Renormalization, Diffusion Models, and Optimal Transport'''


== March 2, 2023, in person: Max Hill (UW-Madison)    ==
To this end, we will explain how Polchinski’s formulation of the renormalization group of a statistical field theory can be seen as a gradient flow equation for a relative entropy functional. We will review some related work applying this idea to problems in mathematical physics; subsequently, we will explain how this idea can be used to design adaptive bridge sampling schemes for lattice field theories based on diffusion models which learn the RG flow of the theory.  Based on joint work with Jordan Cotler.
'''On the Effect of Intralocus Recombination on Triplet-Based Species Tree Estimation'''


My talk will introduce some key topics in mathematical phylogenetics and is intended to be accessible for those not familiar with the field. I will discuss joint work with Sebastien Roch on the subject of species tree estimation from multiple loci subject to intralocus recombination. The focus is on R*, a summary coalescent-based method using rooted triplets. I will present a result showing how intralocus recombination can give rise to an "inconsistency zone," in which correct inference using R* is not assured even in the limit of infinite amount of data.
== March 28, 2024: Spring Break ==
'''TBA'''


== March 9, 2023, in person: [https://math.uchicago.edu/~xuanw/ Xuan Wu] (U. Chicago)    ==
== April 4, 2024: Zijie Zhuang (Upenn)  via zoom https://uwmadison.zoom.us/j/99288619661 ==
'''From the KPZ equation to the directed landscape'''
'''Percolation Exponent, Conformal Radius for SLE, and Liouville Structure Constant'''


This talk presents the convergence of the KPZ equation to the directed landscape, which is the central object in the KPZ universality class. This convergence result is the first to the directed landscape among the positive temperature models.
In recent years, a technique has been developed to compute the conformal radii of random domains defined by SLE curves, which is based on the coupling between SLE and Liouville quantum gravity (LQG). Compared to prior methods that compute SLE related quantities via its coupling with LQG, the crucial new input is the exact solvability of structure constants in Liouville conformal field theory. It appears that various percolation exponents can be expressed in terms of conformal radii that can be computed this way. This includes known exponents such as the one-arm and polychromatic


== March 23, 2023, in person: Jiaming Xu (UW-Madison)    ==
two-arm exponents, as well as the backbone exponents, which is unknown previously. In this talk we will review this method using the derivation of the backbone exponent as an example, based on a joint work with Nolin, Qian, and Sun.


'''Rectangular Matrix addition in low and high temperatures'''
== April 11, 2024: Bjoern Bringman (Princeton) ==
'''Global well-posedness of the stochastic Abelian-Higgs equations in two dimensions.'''  


We study the addition of two <math>{\scriptsize M \times N}</math> rectangular random matrices with certain
There has been much recent progress on the local solution theory for geometric singular SPDEs. However, the global theory is still largely open. In this talk, we discuss the global well-posedness of the stochastic Abelian-Higgs model in two  dimension, which is a geometric singular SPDE arising from gauge theory. The proof is based on a new covariant approach, which consists of two parts: First, we introduce covariant stochastic objects, which are controlled using covariant heat kernel estimates. Second, we control nonlinear remainders using a covariant monotonicity formula, which is inspired by earlier work of Hamilton.
invariant distributions in two limit regimes, where the parameter <math>{\scriptsize \beta}</math> (inverse temperature) goes to infinity and zero. In low temperature regime the random singular values of the sum concentrate at deterministic points, while in high temperature regime we obtain a Law of Large Numbers of the empirical measures. Our proof uses the so-called type BC Bessel function as characteristic function of rectangular matrices, and through the analysis of this function we introduce a new family of cumulants, that linearize the addition in high temperature limit, and
degenerate to the classical or free cumulants in special cases.


== March 30, 2023, in person: [http://www.math.toronto.edu/balint/ Bálint Virág] (Toronto)   ==
== April 18, 2024: Christopher Janjigian (Purdue) ==
'''The planar stochastic heat equation and the directed landscape'''
'''Infinite geodesics and Busemann functions in inhomogeneous exponential last passage percolation'''


The planar stochastic heat equation describes heat flow or random polymers on an inhomogeneous surface. It is a finite-temperature version of planar first passage percolation such as the Eden growth model. It is the first model with plane symmetries for which we can show convergence to the directed landscape. The methods use a Skorokhod integral representation and Gaussian multiplicative chaos on path space.


Joint work with Jeremy Quastel and Alejandro Ramirez.
This talk will discuss some recent progress on understanding the structure of semi-infinite geodesics and their associated Busemann functions in the inhomogeneous exactly solvable exponential last-passage percolation model. In contrast to the homogeneous model, this generalization admits linear segments of the limit shape and an associated richer structure of semi-infinite geodesic behaviors. Depending on certain choices of the inhomogeneity parameters, we show that the model exhibits new behaviors of semi-infinite geodesics, which include wandering semi-infinite geodesics with no asymptotic direction, isolated asymptotic directions of semi-infinite geodesics, and non-trivial intervals of directions with no semi-infinite geodesics.  


== April 6, 2023, in person: [https://shankarbhamidi.web.unc.edu/ Shankar Bhamidi] (UNC-Chapel Hill)    ==


'''Disorder models for random graphs, Erdos’s leader problem, and power of limited choice models for network evolution'''
Based on joint work-in-progress with Elnur Emrah (Bristol) and Timo Seppäläinen (Madison)
First passage percolation, and more generally the study of diffusion of material through disordered systems is a fundamental area in probabilistic combinatorics with a vast body of work especially in the context of spatial systems.
The goal of this talk is to survey a slightly different setting for such questions namely the more “mean-field” setting of random graph models. We will describe the state of the art of this field, with the final goal of describing one of the main conjectures in this area namely the conjectured scaling limit of the minimal spanning tree and its dependence on the degree exponent of the corresponding network model. We will describe recent progress in this area, its connection to questions in dynamic network models, in particular Erdos’s leader problem for the identity of the maximal component for critical random graphs, and the intuition for understanding the evolution of maximal components through the critical scaling window from a different area of probabilistic combinatorics, namely the study of limited choice models for network evolution. 


== April 13, 2023, in person: [http://www.bricehuang.com/index.html Brice Huang] (MIT)   ==
== April 25, 2024: Colin McSwiggen (NYU) ==
'''Large deviations and multivariable special functions'''


== April 20, 2023, in person: [http://www.math.columbia.edu/~remy/ Guillaume Remy] (IAS)    ==
This talk introduces techniques for using the large deviations of interacting particle systems to study the large-N asymptotics of generalized Bessel functions. These functions arise from a versatile approach to special functions known as Dunkl theory, and they include as special cases most of the spherical integrals that have captured the attention of random matrix theorists for more than two decades. I will give a brief introduction to Dunkl theory and then present a result on the large-N limits of generalized Bessel functions, which unifies several results on spherical integrals in the random matrix theory literature. These limits follow from a large deviations principle for radial Dunkl processes, which are generalizations of Dyson Brownian motion. If time allows, I will discuss some further results on large deviations of radial Heckman-Opdam processes and/or applications to asymptotic representation theory. Joint work with Jiaoyang Huang.


== April 27, 2023, in person: [http://www.math.tau.ac.il/~peledron/ Ron Peled] (Tel Aviv/IAS)   ==
== May 2, 2024: Anya Katsevich (MIT) ==
'''The Laplace approximation in high-dimensional Bayesian inference'''


== May 4, 2023, in person: [https://www.asc.ohio-state.edu/sivakoff.2// David Sivakoff] (Ohio State)   ==
Computing integrals against a high-dimensional posterior is the major computational bottleneck in Bayesian inference. A popular technique to reduce this computational burden is to use the Laplace approximation, a Gaussian distribution, in place of the true posterior. Despite its widespread use, the Laplace approximation's accuracy in high dimensions is not well understood. The body of existing results does not form a cohesive theory, leaving open important questions e.g. on the dimension dependence of the approximation rate. We address many of these questions through the unified framework of a new, leading order asymptotic decomposition of high-dimensional Laplace integrals. In particular, we (1) determine the tight dimension dependence of the approximation error, leading to the tightest known Bernstein von Mises result on the asymptotic normality of the posterior, and (2) derive a simple correction to this Gaussian distribution to obtain a higher-order accurate approximation to the posterior.

Latest revision as of 04:15, 16 November 2024

Back to Probability Group

  • When: Thursdays at 2:30 pm
  • Where: 901 Van Vleck Hall
  • Organizers: Hanbaek Lyu, Tatyana Shcherbyna, David Clancy
  • To join the probability seminar mailing list: email probsem+subscribe@g-groups.wisc.edu.
  • To subscribe seminar lunch announcements: email lunchwithprobsemspeaker+subscribe@g-groups.wisc.edu

Past Seminars


Fall 2024

Thursdays at 2:30 PM either in 901 Van Vleck Hall or on Zoom

We usually end for questions at 3:20 PM.

September 5, 2024:

No seminar

September 12, 2024: Hongchang Ji (UW-Madison)

Spectral edge of non-Hermitian random matrices

We report recent progress on spectra of so-called deformed i.i.d. matrices. They are square non-Hermitian random matrices of the form $A+X$ where $X$ has centered i.i.d. entries and $A$ is a deterministic bias, and $A$ and $X$ are on the same scale so that their contributions to the spectrum of $A+X$ are comparable. Under this setting, we present two recent results concerning universal patterns arising in eigenvalue statistics of $A+X$ around its boundary, on macroscopic and microscopic scales. The first result shows that the macroscopic eigenvalue density of $A+X$ typically has a jump discontinuity around the boundary of its support, which is a distinctive feature of $X$ by the \emph{circular law}. The second result is edge universality for deformed non-Hermitian matrices; it shows that the local eigenvalue statistics of $A+X$ around a typical (jump) boundary point is universal, i.e., matches with those of a Ginibre matrix $X$ with i.i.d. standard Gaussian entries.

Based on joint works with A. Campbell, G. Cipolloni, and L. Erd\H{o}s.


September 19, 2024: Miklos Racz (Northwestern)

The largest common subtree of uniform attachment trees

Consider two independent uniform attachment trees with n nodes each -- how large is their largest common subtree? Our main result gives a lower bound of n^{0.83}. We also give some upper bounds and bounds for general random tree growth models. This is based on joint work with Johannes Bäumler, Bas Lodewijks, James Martin, Emil Powierski, and Anirudh Sridhar.

September 26, 2024: Dmitry Krachun (Princeton)

A glimpse of universality in critical planar lattice models

Abstract: Many models of statistical mechanics are defined on a lattice, yet they describe behaviour of objects in our seemingly isotropic world. It is then natural to ask why, in the small mesh size limit, the directions of the lattice disappear. Physicists' answer to this question is partially given by the Universality hypothesis, which roughly speaking states that critical properties of a physical system do not depend on the lattice or fine properties of short-range interactions but only depend on the spatial dimension and the symmetry of the possible spins. Justifying the reasoning behind the universality hypothesis mathematically seems virtually impossible and so other ideas are needed for a rigorous derivation of universality even in the simplest of setups.

In this talk I will explain some ideas behind the recent result which proves rotational invariance of the FK-percolation model. In doing so, we will see how rotational invariance is related to universality among a certain one-dimensional family of planar lattices and how the latter can be proved using exact integrability of the six-vertex model using Bethe ansatz.

Based on joint works with Hugo Duminil-Copin, Karol Kozlowski, Ioan Manolescu, Mendes Oulamara, and Tatiana Tikhonovskaia.

October 3, 2024: Joshua Cape (UW-Madison)

A new random matrix: motivation, properties, and applications

In this talk, we introduce and study a new random matrix whose entries are dependent and discrete valued. This random matrix is motivated by problems in multivariate analysis and nonparametric statistics. We establish its asymptotic properties and provide comparisons to existing results for independent entry random matrix models. We then apply our results to two problems: (i) community detection, and (ii) principal submatrix localization. Based on joint work with Jonquil Z. Liao.

October 10, 2024: Midwest Probability Colloquium

N/A

October 17, 2024: Kihoon Seong (Cornell)

Gaussian fluctuations of focusing Φ^4 measure around the soliton manifold

I will explain the central limit theorem for the focusing Φ^4 measure in the infinite volume limit. The focusing Φ^4 measure, an invariant Gibbs measure for the nonlinear Schrödinger equation, was first studied by Lebowitz, Rose, and Speer (1988), and later extended by Bourgain (1994), Brydges and Slade (1996), and Carlen, Fröhlich, and Lebowitz (2016).

Rider previously showed that this measure is strongly concentrated around a family of minimizers of the associated Hamiltonian, known as the soliton manifold. In this talk, I will discuss the fluctuations around this soliton manifold. Specifically, we show that the scaled field under the focusing Φ^4 measure converges to white noise in the infinite volume limit, thus identifying the next-order fluctuations, as predicted by Rider.

This talk is based on joint work with Philippe Sosoe (Cornell).

October 24, 2024: Jacob Richey (Alfred Renyi Institute)

Stochastic abelian particle systems and self-organized criticality

Abstract: Activated random walk (ARW) is an 'abelian' particle system that conjecturally exhibits complex behaviors which were first described by physicists in the 1990s, namely self organized criticality and hyperuniformity. I will discuss recent results for ARW and the stochastic sandpile (a related model) on Z and other graphs, plus many open questions.

October 31, 2024: David Clancy (UW-Madison)

Likelihood landscape on a known phylogeny

Abstract: Over time, ancestral populations evolve to become separate species. We can represent this history as a tree with edge lengths where the leaves are the modern-day species. If we know the precise topology of the tree (i.e. the precise evolutionary relationship between all the species), then we can imagine traits (their presence or absence) being passed down according to a symmetric 2-state continuous-time Markov chain. The branch length becomes the probability a parent species has a trait while the child species does not. This length is unknown, but researchers have observed they can get pretty good estimates using maximum likelihood estimation and only the leaf data despite the fact that the number of critical points for the log-likelihood grows exponentially fast in the size of the tree. In this talk, I will discuss why this MLE approach works by showing that the population log-likelihood is strictly concave and smooth in a neighborhood around the true branch length parameters and the size.

This talk is based on joint work with Hanbaek Lyu, Sebastien Roch and Allan Sly.

November 7, 2024: Zoe Huang (UNC Chapel Hill)

Cutoff for Cayley graphs of nilpotent groups

Abstract: Abstract:  We consider the random Cayley graphs of a sequence of finite nilpotent groups of diverging sizes $G=G(n)$, whose ranks and nilpotency classes are uniformly bounded. For some $k=k(n)$ such that $1\ll\log k \ll \log |G|$, we pick a random set of generators $S=S(n)$ by sampling $k$ elements $Z_1,\ldots,Z_k$ from $G$ uniformly at random with replacement, and set $S:=\{Z_j^{\pm 1}:1 \le j\le k \}$. We show that the simple random walk on Cay$(G,S)$ exhibits cutoff with high probability. Some of our results apply to a general set of generators. Namely, we show that there is a constant $c>0$, depending only on the rank and the nilpotency class of $G$, such that for all symmetric sets of generators $S$ of size at most $ \frac{c\log |G|}{\log \log |G|}$, the spectral gap and the $\varepsilon$-mixing time of the simple random walk $X=(X_t)_{t\geq 0}$ on Cay$(G,S)$ are asymptotically the same as those of the projection of $X$ to the abelianization of $G$, given by $[G,G]X_t$. In particular, $X$ exhibits cutoff if and only if its projection does. Based on joint work with Jonathan Hermon.

November 14, 2024: Nabarun Deb (University of Chicago)

Mean-Field fluctuations in Ising models and posterior prediction intervals in low signal-to-noise ratio regimes

Ising models have become central in probability, statistics, and machine learning. They naturally appear in the posterior distribution of regression coefficients under the linear model $Y = X\beta + \epsilon$, where $\epsilon \sim N(0, \sigma^2 I_n)$. This talk explores fluctuations of specific linear statistics under the Ising model, with a focus on applications in Bayesian linear regression.

In the first part, we examine Ising models on "dense regular" graphs and characterize the limiting distribution of average magnetization across various temperature and magnetization regimes, extending previous results beyond the Curie-Weiss (complete graph) case. In the second part, we analyze posterior prediction intervals for linear statistics in low signal-to-noise ratio (SNR) scenarios, also known as the contiguity regime. Here, unlike standard Bernstein-von Mises results, the limiting distributions are highly sensitive to the choice of prior. We illustrate this dependency by presenting limiting laws under both correctly specified and misspecified priors.

This talk is based on joint work with Sumit Mukherjee and Seunghyun Li.

November 21, 2024: Reza Gheissari (Northwestern)

Wetting and pre-wetting in (2+1)D solid-on-solid interfaces

The (d+1)D-solid-on-solid model is a simple model of integer-valued height functions that approximates the low-temperature interface of an Ising model. When $d\ge 2$, with zero-boundary conditions, at low temperatures the surface is localized about height $0$, but when constrained to take only non-negative values entropic repulsion pushes it to take typical heights of $O(\log n)$.  I will describe the mechanism of entropic repulsion, and present results on how the picture changes when one introduces a competing force trying to keep the interface localized (either an external field or a reward for points where the height is exactly zero). Along the way, I will outline rich predictions for the shapes of level curves, and for metastability phenomena in the Glauber dynamics. Based on joint work with Eyal Lubetzky and Joseph Chen.

November 28, 2024: Thanksgiving

No seminar

December 5, 2024: Erik Bates (NC State)

Parisi formulas in multi-species and vector spin glass models

The expression "Parisi formula" refers to a variational formula postulated by Parisi in 1980 to give the limiting free energy of the Sherrington--Kirkpatrick (SK) spin glass.  The SK model was originally conceived as a mean-field description for disordered magnetism, and has since become a mathematical prototype for frustrated disordered systems and high-complexity functions.  In recent years, there has been an effort to extend the Parisi framework to various generalizations of the SK model, raising new physical questions met with fresh mathematical challenges.  In this talk, I will share some developments in this evolving story.  Based on joint works with Leila Sloman and Youngtak Sohn.


Spring 2024

Thursdays at 2:30 PM either in 901 Van Vleck Hall or on Zoom

We usually end for questions at 3:20 PM.

January 25, 2024: Tatyana Shcherbina (UW-Madison)

Characteristic polynomials of sparse non-Hermitian random matrices

We consider the asymptotic local behavior of the second correlation functions of the characteristic polynomials of sparse non-Hermitian random matrices $X_n$ whose entries have the form $x_{jk}=d_{jk}w_{jk}$ with iid complex standard Gaussian $w_{jk}$ and normalized iid Bernoulli$(p)$ $d_{jk}$.  If $p\to\infty$, the local asymptotic behavior of the second correlation function of characteristic polynomials near $z_0\in \mathbb{C}$ coincides with those for  Ginibre ensemble of non-Hermitian matrices with iid Gaussian entries: it converges to a determinant of the Ginibre kernel in the bulk $|z_0|<1$, and it is factorized if $|z_0|>1$. It appears, however, that for the finite $p>0$, the behavior is different and it exhibits the transition between three different regimes depending on values $p$ and $|z_0|^2$.  This is the joint work with Ie. Afanasiev.  

February 1, 2024: Patrick Lopatto (Brown)

Optimal rigidity and maximum of the characteristic polynomial of Wigner matrices

We consider two related questions about the extremal statistics of Wigner matrices (random symmetric matrices with independent entries). First, how much can their eigenvalues fluctuate? It is known that the eigenvalues of such matrices display repulsive interactions, which confine them near deterministic locations. We provide optimal estimates for this “rigidity” phenomenon. Second, what is the behavior of the maximum of the characteristic polynomial? This is motivated by a conjecture of Fyodorov–Hiary–Keating on the maxima of logarithmically correlated fields, and we will present the first results on this question for Wigner matrices. This talk is based on joint work with Paul Bourgade and Ofer Zeitouni.

February 8, 2024: Benoit Dagallier (NYU), online talk: https://uwmadison.zoom.us/j/95724628357

Stochastic dynamics and the Polchinski equation

I will discuss a general framework to obtain large scale information in statistical mechanics and field theory models. The basic, well known idea is to build a dynamics that samples from the model and control its long time behaviour. There are many ways to build such a dynamics, the Langevin dynamics being a typical example. In this talk I will introduce another, the Polchinski dynamics, based on renormalisation group ideas. The dynamics is parametrised by a parameter representing a certain notion of scale in the model under consideration. The Polchinski dynamics has a number of interesting properties that make it well suited to study large-dimensional models. It is also known under the name stochastic localisation. I will mention a number of recent applications of this dynamics, in particular to prove functional inequalities via a generalisation of Bakry and Emery's convexity-based argument. The talk is based on joint work with Roland Bauerschmidt and Thierry Bodineau and the recent review paper https://arxiv.org/abs/2307.07619 .

February 15, 2024: Brian Rider (Temple)

A matrix model for conditioned Stochastic Airy

There are three basic flavors of local limit theorems in random matrix theory, connected to the spectral bulk and the so-called soft and hard edges. There also abound a collection of more exotic limits which arise in models that posses degenerate (or “non-regular”) points in their equilibrium measure.  What is more, there is typically a natural double scaling about these non-regular points, producing limit laws that transition between the more familiar basic flavors. Here I will describe a general beta matrix model for which the appropriate double scaling limit is the Stochastic Airy Operator, conditioned on having no eigenvalues below a fixed level.  I know of no other random matrix double scaling fully characterized outside of beta = 2. This is work in progress with J. Ramirez (University of Costa Rica).

February 22, 2024: No talk this week

TBA

February 29, 2024: Zongrui Yang (Columbia)

Stationary measures for integrable models with two open boundaries

We present two methods to study the stationary measures of integrable systems with two open boundaries. The first method is based on Askey-Wilson signed measures, which is illustrated for the open asymmetric simple exclusion process and the six-vertex model on a strip. The second method is based on two-layer Gibbs measures and is illustrated for the geometric last-passage percolation and log-gamma polymer on a strip. This talk is based on joint works with Yizao Wang, Jacek Wesolowski, Guillaume Barraquand and Ivan Corwin.

March 7, 2024: Atilla Yilmaz (Temple)

Stochastic homogenization of nonconvex Hamilton-Jacobi equations

After giving a self-contained introduction to the qualitative homogenization of Hamilton-Jacobi (HJ) equations in stationary ergodic media in spatial dimension d ≥ 1, I will focus on the case where the Hamiltonian is nonconvex, and highlight some interesting differences between: (i) periodic vs. truly random media; (ii) d = 1 vs. d ≥ 2; and (iii) inviscid vs. viscous HJ equations.

March 14, 2024: Eric Foxall (UBC Okanagan)

Some uses of ordered representations in finite-population exchangeable ancestry models (ArXiv: https://arxiv.org/abs/2104.00193)

For a population model that encodes parent-child relations, an ordered representation is a partial or complete labelling of individuals, in order of their descendants’ long-term success in some sense, with respect to which the ancestral structure is more tractable. The two most common types are the lookdown and the spinal decomposition(s), used respectively to study exchangeable models and Markov branching processes. We study the lookdown for an exchangeable model with a fixed, arbitrary sequence of natural numbers, describing population size over time. We give a simple and intuitive construction of the lookdown via the complementary notions of forward and backward neutrality. We discuss its connection to the spinal decomposition in the setting of Galton-Watson trees. We then use the lookdown to give sufficient conditions on the population sequence for the existence of a unique infinite line of descent. For a related but slightly weaker property, takeover, the necessary and sufficient conditions are more easily expressed: infinite time passes on the coalescent time scale. The latter property is also related to the following question of identifiability: under what conditions can some or all of the lookdown labelling be determined by the unlabelled lineages? A reasonably good answer can be obtained by comparing extinction times and relative sizes of lineages.

March 21, 2024: Semon Rezchikov (Princeton)

Renormalization, Diffusion Models, and Optimal Transport

To this end, we will explain how Polchinski’s formulation of the renormalization group of a statistical field theory can be seen as a gradient flow equation for a relative entropy functional. We will review some related work applying this idea to problems in mathematical physics; subsequently, we will explain how this idea can be used to design adaptive bridge sampling schemes for lattice field theories based on diffusion models which learn the RG flow of the theory.  Based on joint work with Jordan Cotler.

March 28, 2024: Spring Break

TBA

April 4, 2024: Zijie Zhuang (Upenn) via zoom https://uwmadison.zoom.us/j/99288619661

Percolation Exponent, Conformal Radius for SLE, and Liouville Structure Constant

In recent years, a technique has been developed to compute the conformal radii of random domains defined by SLE curves, which is based on the coupling between SLE and Liouville quantum gravity (LQG). Compared to prior methods that compute SLE related quantities via its coupling with LQG, the crucial new input is the exact solvability of structure constants in Liouville conformal field theory. It appears that various percolation exponents can be expressed in terms of conformal radii that can be computed this way. This includes known exponents such as the one-arm and polychromatic

two-arm exponents, as well as the backbone exponents, which is unknown previously. In this talk we will review this method using the derivation of the backbone exponent as an example, based on a joint work with Nolin, Qian, and Sun.

April 11, 2024: Bjoern Bringman (Princeton)

Global well-posedness of the stochastic Abelian-Higgs equations in two dimensions.

There has been much recent progress on the local solution theory for geometric singular SPDEs. However, the global theory is still largely open. In this talk, we discuss the global well-posedness of the stochastic Abelian-Higgs model in two dimension, which is a geometric singular SPDE arising from gauge theory. The proof is based on a new covariant approach, which consists of two parts: First, we introduce covariant stochastic objects, which are controlled using covariant heat kernel estimates. Second, we control nonlinear remainders using a covariant monotonicity formula, which is inspired by earlier work of Hamilton.

April 18, 2024: Christopher Janjigian (Purdue)

Infinite geodesics and Busemann functions in inhomogeneous exponential last passage percolation


This talk will discuss some recent progress on understanding the structure of semi-infinite geodesics and their associated Busemann functions in the inhomogeneous exactly solvable exponential last-passage percolation model. In contrast to the homogeneous model, this generalization admits linear segments of the limit shape and an associated richer structure of semi-infinite geodesic behaviors. Depending on certain choices of the inhomogeneity parameters, we show that the model exhibits new behaviors of semi-infinite geodesics, which include wandering semi-infinite geodesics with no asymptotic direction, isolated asymptotic directions of semi-infinite geodesics, and non-trivial intervals of directions with no semi-infinite geodesics.


Based on joint work-in-progress with Elnur Emrah (Bristol) and Timo Seppäläinen (Madison)

April 25, 2024: Colin McSwiggen (NYU)

Large deviations and multivariable special functions

This talk introduces techniques for using the large deviations of interacting particle systems to study the large-N asymptotics of generalized Bessel functions. These functions arise from a versatile approach to special functions known as Dunkl theory, and they include as special cases most of the spherical integrals that have captured the attention of random matrix theorists for more than two decades. I will give a brief introduction to Dunkl theory and then present a result on the large-N limits of generalized Bessel functions, which unifies several results on spherical integrals in the random matrix theory literature. These limits follow from a large deviations principle for radial Dunkl processes, which are generalizations of Dyson Brownian motion. If time allows, I will discuss some further results on large deviations of radial Heckman-Opdam processes and/or applications to asymptotic representation theory. Joint work with Jiaoyang Huang.

May 2, 2024: Anya Katsevich (MIT)

The Laplace approximation in high-dimensional Bayesian inference

Computing integrals against a high-dimensional posterior is the major computational bottleneck in Bayesian inference. A popular technique to reduce this computational burden is to use the Laplace approximation, a Gaussian distribution, in place of the true posterior. Despite its widespread use, the Laplace approximation's accuracy in high dimensions is not well understood. The body of existing results does not form a cohesive theory, leaving open important questions e.g. on the dimension dependence of the approximation rate. We address many of these questions through the unified framework of a new, leading order asymptotic decomposition of high-dimensional Laplace integrals. In particular, we (1) determine the tight dimension dependence of the approximation error, leading to the tightest known Bernstein von Mises result on the asymptotic normality of the posterior, and (2) derive a simple correction to this Gaussian distribution to obtain a higher-order accurate approximation to the posterior.