Graduate Algebraic Geometry Seminar Fall 2023: Difference between revisions

From UW-Math Wiki
Jump to navigation Jump to search
(blank out talks)
 
(33 intermediate revisions by 6 users not shown)
Line 13: Line 13:


==Give a talk!==
==Give a talk!==
We need volunteers to give talks this semester. Beginning graduate students are particularly encouraged to give a talk, since it's a great way to get your feet wet with the material. If you would like some talk ideas, see the list on the [https://hilbert.math.wisc.edu/wiki/index.php?title=Graduate_Algebraic_Geometry_Seminar main page]. Sign up [https://forms.gle/XmdJ4hGbxvpbVVwr5 here].
We need volunteers to give talks this semester. Beginning graduate students are particularly encouraged to give a talk, since it's a great way to get your feet wet with the material. If you would like some talk ideas, see the list on the [https://hilbert.math.wisc.edu/wiki/index.php?title=Graduate_Algebraic_Geometry_Seminar main page]. Sign up [https://forms.gle/fNgXzpn7QAJM4Ybo9 here].


===Wishlist===
===Wishlist===
Line 33: Line 33:
{| style="color:black; font-size:120%" border="0" cellpadding="14" cellspacing="5"
{| style="color:black; font-size:120%" border="0" cellpadding="14" cellspacing="5"
|-
|-
| bgcolor="#D0D0D0" width="300" align="center" |'''Date'''
| bgcolor="#D0D0D0" width="200" align="center" |'''Date'''
| bgcolor="#A6B658" width="300" align="center" |'''Speaker'''
| bgcolor="#A6B658" width="200" align="center" |'''Speaker'''
| bgcolor="#BCD2EE" width="300" align="center" |'''Title'''
| bgcolor="#BCD2EE" width="300" align="center" |'''Title'''
| bgcolor="#BCD2EE" width="400" align="center" |'''Abstract'''
|-
|-
| bgcolor="#E0E0E0" |[[Graduate Algebraic Geometry Seminar Spring 2023#September 13|September 13]]
| bgcolor="#E0E0E0" |September 13
| bgcolor="#C6D46E" |  
| bgcolor="#C6D46E" | Peter Wei
| bgcolor="#BCE2FE" |  
| bgcolor="#BCE2FE" | Introduction to the Cartier Isomorphism (Pretalk)
| bgcolor="#BCE2FE" | This is a preparatory talk for Josh Mundinger's talk on Friday. We discuss the Cartier isomorphism.
|-
|-
| bgcolor="#E0E0E0" |[[Graduate Algebraic Geometry Seminar Spring 2023#September 20|September 20]]
| bgcolor="#E0E0E0" |September 20
| bgcolor="#C6D46E" |
| bgcolor="#C6D46E" |
| bgcolor="#BCE2FE" |
| bgcolor="#BCE2FE" |
|-
| bgcolor="#E0E0E0" |[[Graduate Algebraic Geometry Seminar Spring 2023#September 27|September 27]]
| bgcolor="#C6D46E" |
| bgcolor="#BCE2FE" |
| bgcolor="#BCE2FE" |
|-
|-
| bgcolor="#E0E0E0" |[[Graduate Algebraic Geometry Seminar Spring 2023#October 4|October 4]]
| bgcolor="#E0E0E0" |September 27
| bgcolor="#C6D46E" |
| bgcolor="#C6D46E" |Yifan Wei
| bgcolor="#BCE2FE" |
| bgcolor="#BCE2FE" |p-torsions in the p-adic land and de Rham cohomology
| bgcolor="#BCE2FE" | Following Tate, we will try to visualize an elliptic curve over Cp, specifically, the p-adic disk near identity. Logarithm in the p-adic land provides a nice linearization to the problem, and we'll explore what this all means. If time permits, I'll sketch the proof of Hodge-Tate decomposition. (You know something like this is coming.)
|-
|-
| bgcolor="#E0E0E0" |[[Graduate Algebraic Geometry Seminar Spring 2023#October 11|October 11]]
| bgcolor="#E0E0E0" |October 4
| bgcolor="#C6D46E" |
| bgcolor="#C6D46E" |Owen Goff
| bgcolor="#BCE2FE" |
| bgcolor="#BCE2FE" | TBA
| bgcolor="#BCE2FE" | TBA
|-
|-
| bgcolor="#E0E0E0" |[[Graduate Algebraic Geometry Seminar Spring 2023#October 18|October 18]]
| bgcolor="#E0E0E0" |October 11
| bgcolor="#C6D46E" |
| bgcolor="#C6D46E" | TBA
| bgcolor="#BCE2FE" |
| bgcolor="#BCE2FE" | TBA
| bgcolor="#BCE2FE" | TBA
|-
|-
| bgcolor="#E0E0E0" |[[Graduate Algebraic Geometry Seminar Spring 2023#October 25|October 25]]
| bgcolor="#E0E0E0" |October 18
| bgcolor="#C6D46E" |
| bgcolor="#C6D46E" |Alex Hof
| bgcolor="#BCE2FE" |
| bgcolor="#BCE2FE" |Why Does Normalization Resolve Singularities in Codimension 1?
| bgcolor="#BCE2FE" |We review the definition of the normalization of an algebraic variety, discuss the geometric intuition for it, and explain why normalizing removes codimension-1 singularities. This talk is intended to be accessible to people taking first-semester algebraic geometry.
|-
|-
| bgcolor="#E0E0E0" |[[Graduate Algebraic Geometry Seminar Spring 2023#November 1|November 1]]
| bgcolor="#E0E0E0" | October 25
| bgcolor="#C6D46E" |
| bgcolor="#C6D46E" |Jack Messina
| bgcolor="#BCE2FE" |
| bgcolor="#BCE2FE" |Variations of Hodge Structure and Hodge Modules
| bgcolor="#BCE2FE" | This talk aims to introduce Hodge modules. We will start with the classical variation of Hodge structure, and then cover some background on perverse sheaves and D-modules. From here, we can introduce pure Hodge modules. We end by mentioning mixed Hodge modules and the Saito vanishing theorem.
|-
|-
| bgcolor="#E0E0E0" |[[Graduate Algebraic Geometry Seminar Spring 2023#November 8|November 8]]
| bgcolor="#E0E0E0" | November 1
| bgcolor="#C6D46E" |
| bgcolor="#C6D46E" |Yiyu Wang
| bgcolor="#BCE2FE" |
| bgcolor="#BCE2FE" |
| bgcolor="#BCE2FE" |
|-
|-
| bgcolor="#E0E0E0" |[[Graduate Algebraic Geometry Seminar Spring 2023#November 15|November 15]]
| bgcolor="#E0E0E0" | November 8
| bgcolor="#C6D46E" |
| bgcolor="#C6D46E" |John Cobb
| bgcolor="#BCE2FE" |
| bgcolor="#BCE2FE" |Likelihood Geometry
| bgcolor="#BCE2FE" |Maximum likelihood estimation (MLE) is a fundamental task in statistics. June Huh and Bernd Sturmfels wrote a long paper that explores how characteristics of the MLE problem for algebraic statistical models are reflected in the geometry of the likelihood correspondence, a variety that ties together observed data and their maximum likelihood estimators. I’ll define these objects, frame some questions (with partial answers) about them, and give some cool facts coming from algebraic statistics. This will be adapted from a much shorter talk, so there will be plenty of time for tangents and questions!
|-
|-
| bgcolor="#E0E0E0" |[[Graduate Algebraic Geometry Seminar Spring 2023#November 22| November 22]]
| bgcolor="#E0E0E0" | November 15
| bgcolor="#C6D46E" |
| bgcolor="#C6D46E" |Peter Wei
| bgcolor="#BCE2FE" |Pretalk for Purnaprajna Bangere's talk
| bgcolor="#BCE2FE" |
| bgcolor="#BCE2FE" |
|-
|-
| bgcolor="#E0E0E0" | [[Graduate Algebraic Geometry Seminar Spring 2023#November 29|November 29]]
| bgcolor="#E0E0E0" |November 22
| bgcolor="#C6D46E" |
| bgcolor="#C6D46E" |Thanksgiving Break
| bgcolor="#BCE2FE" |
| bgcolor="#BCE2FE" |
|-
| bgcolor="#E0E0E0" | [[Graduate Algebraic Geometry Seminar Spring 2023#December 6|December 6]]
| bgcolor="#C6D46E" |
| bgcolor="#BCE2FE" |
| bgcolor="#BCE2FE" |
|-
|-
| bgcolor="#E0E0E0" | [[Graduate Algebraic Geometry Seminar Spring 2023#December 13|December 13]]
| bgcolor="#E0E0E0" |November 29
| bgcolor="#C6D46E" |  
| bgcolor="#C6D46E" |Yanbo Chen
| bgcolor="#BCE2FE" |  
| bgcolor="#BCE2FE" |An Introduction to Homotopy Theory
|}
| bgcolor="#BCE2FE" |The Brown Representability theorem tells us that each generilized cohomology theory is representable, then use the suspension theorem, we get a sequence of spaces and some relations between them. This is a simple model for spectrum in algebraic topology. In this talk we will discuss this notion, give some geometric examples and explore one important problem: how to get a ``good<nowiki>''</nowiki> category for spectra.
</center>
 
===September 13===
<center>
{| style="color:black; font-size:100%" border="2" cellpadding="10" width="700" cellspacing="20" table
|-
| bgcolor="#A6B658" align="center" style="font-size:125%" |
|-
|-
| bgcolor="#BCD2EE" align="center" |Title:
| bgcolor="#E0E0E0" | December 9
| bgcolor="#C6D46E" | Kevin Dao
| bgcolor="#BCE2FE" |Introduction to D-Modules
| bgcolor="#BCE2FE" |On the basics of the theory of D-Modules and how it gets used.
|-
|-
| bgcolor="#BCD2EE" |Abstract:
| bgcolor="#E0E0E0" | December 13
|}                                                                       
| bgcolor="#C6D46E" | Maya Banks
</center>
| bgcolor="#BCE2FE" | Intro to weighted projective space
 
| bgcolor="#BCE2FE" |
===September 20===
|}
<center>
{| style="color:black; font-size:100%" border="2" cellpadding="10" width="700" cellspacing="20" table
|-
| bgcolor="#A6B658" align="center" style="font-size:125%" | John Cobb
|-
| bgcolor="#BCD2EE" align="center" |Title: Introduction to Intersection Theory
|-
| bgcolor="#BCD2EE" |Abstract: In this <s>advertisement</s> talk, I'd like to talk about some methods used in enumerative geometry. I'll define what a Chow ring is, count some things with it, and tell you why you should read "3264 and all that" this semester with me.
|}                                                                       
</center>
 
===September 27===
<center>
{| style="color:black; font-size:100%" border="2" cellpadding="10" width="700" cellspacing="20" table
|-
| bgcolor="#A6B658" align="center" style="font-size:125%" | Yiyu Wang
|-
| bgcolor="#BCD2EE" align="center" |Title: An introduction to Macpherson's Chern classes
|-
| bgcolor="#BCD2EE" |Abstract: In this talk, I will start from a formula of the Euler characteristic number of a degree d smooth hypersurface in P^n and discuss how to generalize this formula to the singular case. This naturally leads to the notion of the Chern classes of a singular space. I will briefly introduce Macpherson's Chern classes which is a natural generalization of the ordinary Chern class and how to calculate these classes.
|}                                                                       
</center>
 
===October 4===
<center>
{| style="color:black; font-size:100%" border="2" cellpadding="10" width="700" cellspacing="20" table
|-
| bgcolor="#A6B658" align="center" style="font-size:125%" |Alex Hof
|-
| bgcolor="#BCD2EE" align="center" |Title: Normal Cones in Algebraic Geometry
|-
| bgcolor="#BCD2EE" |Abstract: In this talk, we'll go over the definition of the normal cone of a closed subscheme, explore the geometric intuition behind it via a construction called the Rees algebra, and explain how it can be used to give geometric characterizations of apparently algebraic notions such as flatness and depth.
|}                                                                       
</center><center></center>
 
===October 11===
<center>
{| style="color:black; font-size:100%" border="2" cellpadding="10" width="700" cellspacing="20" table
|-
| bgcolor="#A6B658" align="center" style="font-size:125%" |Maya Banks
|-
| bgcolor="#BCD2EE" align="center" |Title: Syzygies of Projective Varieties
|-
| bgcolor="#BCD2EE" | Abstract: The general slogan for the study of syzygies in geometry is that "geometric information about a projective variety is reflected in its sygygies." In this talk, we'll discuss some of the early results that kick-started this idea, such as Castelnuovo-Mumford regularity, quadric generation of varieties in P^n, and Green's Linear Syzygy Theorem. I'll go over all of the basic definitions and hopefully do lots of examples---in particular, this talk should be accessible to someone taking the intro Algebraic Geometry sequence.
|}                                                                       
</center>
 
===October 18===
<center>
{| style="color:black; font-size:100%" border="2" cellpadding="10" width="700" cellspacing="20" table
|-
| bgcolor="#A6B658" align="center" style="font-size:125%" |Asvin G
|-
| bgcolor="#BCD2EE" align="center" |Title: TBD
|-
| bgcolor="#BCD2EE" |Abstract:
|}                                                                       
</center>
 
===October 25===
<center>
{| style="color:black; font-size:100%" border="2" cellpadding="10" width="700" cellspacing="20" table
|-
| bgcolor="#A6B658" align="center" style="font-size:125%" |
|-
| bgcolor="#BCD2EE" align="center" |Title:
|-
| bgcolor="#BCD2EE" |Abstract:
|}                                                                       
</center>
 
===November 1===
<center>
{| style="color:black; font-size:100%" border="2" cellpadding="10" width="700" cellspacing="20" table
|-
| bgcolor="#A6B658" align="center" style="font-size:125%" |Kevin Dao
|-
| bgcolor="#BCD2EE" align="center" |Title: Enriques-Kodaira Classification and its Influence on MMP
|-
| bgcolor="#BCD2EE" |Abstract: There is always more to say than there is time to say it. Let this abstract be an overly optimistic summary. I’ll tell you what the EK classification is, how it is achieved, the relevant development of birational algebraic geometry, and then point towards  the difficulties in higher dimensions. I’ll also indicate, where possible and from what I know, the technical tools that are ubiquitous to the topic. If there is time, I will indicate a few problems and directions in either (a) the classification of (non-algebraic) surfaces, (b) rational curves on varieties, (c) major results of the MMP itself.
|}                                                                       
</center>
 
===November 8===
<center>
{| style="color:black; font-size:100%" border="2" cellpadding="10" width="700" cellspacing="20" table
|-
| bgcolor="#A6B658" align="center" style="font-size:125%" |Peter Yi Wei
|-
| bgcolor="#BCD2EE" align="center" |Title: TBD
|-
| bgcolor="#BCD2EE" |Abstract:
|}                                                                       
</center>
 
===November 15===
<center>
{| style="color:black; font-size:100%" border="2" cellpadding="10" width="700" cellspacing="20" table
|-
| bgcolor="#A6B658" align="center" style="font-size:125%" |Dima Arinkin
|-
| bgcolor="#BCD2EE" align="center" |Title: Hitchin Fibration
 
|-
| bgcolor="#BCD2EE" |Abstract:
|}                                                                       
</center>
 
===November 22===
<center>
{| style="color:black; font-size:100%" border="2" cellpadding="10" width="700" cellspacing="20" table
|-
| bgcolor="#A6B658" align="center" style="font-size:125%" |Yunfan He
|-
| bgcolor="#BCD2EE" align="center" |Title: Variation of Hodge structure
|-
| bgcolor="#BCD2EE" |Abstract: I will review a little bit of the classic Hodge theory, and talk about how to generalize to the relative version.
|}                                                                       
</center>
 
===November 29===
<center>
{| style="color:black; font-size:100%" border="2" cellpadding="10" width="700" cellspacing="20" table
|-
| bgcolor="#A6B658" align="center" style="font-size:125%" |Jacob Wood
|-
| bgcolor="#BCD2EE" align="center" |Title:
|-
| bgcolor="#BCD2EE" |Abstract:
|}                                                                       
</center>
 
===December 6===
<center>
{| style="color:black; font-size:100%" border="2" cellpadding="10" width="700" cellspacing="20" table
|-
| bgcolor="#A6B658" align="center" style="font-size:125%" |Brian Hepler
|-
| bgcolor="#BCD2EE" align="center" |Title:
|-
| bgcolor="#BCD2EE" |Abstract:
|}                                                                       
</center>
 
===December 13===
<center>
{| style="color:black; font-size:100%" border="2" cellpadding="10" width="700" cellspacing="20" table
|-
| bgcolor="#A6B658" align="center" style="font-size:125%" |Sun Woo Park
|-
| bgcolor="#BCD2EE" align="center" |Title: Introduction to Newton Polygon
|-
| bgcolor="#BCD2EE" |Abstract:
|}                                                                      
</center>
</center>


==Past Semesters==
==Past Semesters==
[https://wiki.math.wisc.edu/index.php/Graduate_Algebraic_Geometry_Seminar_Spring_2023 Spring 2023]
[https://wiki.math.wisc.edu/index.php/Graduate_Algebraic_Geometry_Seminar_Spring_2023 Spring 2023]  
 
[https://wiki.math.wisc.edu/index.php/Graduate_Algebraic_Geometry_Seminar_Fall_2022 Fall 2022]
 
[https://wiki.math.wisc.edu/index.php/Graduate_Algebraic_Geometry_Seminar_Spring_2022 Spring 2022]
 
[https://hilbert.math.wisc.edu/wiki/index.php/Graduate_Algebraic_Geometry_Seminar_Fall_2021 Fall 2021]
 
[https://www.math.wisc.edu/wiki/index.php/Graduate_Algebraic_Geometry_Seminar_Spring_2021 Spring 2021]
 
[https://www.math.wisc.edu/wiki/index.php/Graduate_Algebraic_Geometry_Seminar_Fall_2020 Fall 2020]
 
[https://www.math.wisc.edu/wiki/index.php/Graduate_Algebraic_Geometry_Seminar_Spring_2020 Spring 2020]
 
[https://www.math.wisc.edu/wiki/index.php/Graduate_Algebraic_Geometry_Seminar_Fall_2019 Fall 2019]


[https://www.math.wisc.edu/wiki/index.php/Graduate_Algebraic_Geometry_Seminar_Spring_2019 Spring 2019]
[https://wiki.math.wisc.edu/index.php/Graduate_Algebraic_Geometry_Seminar_Fall_2022 Fall 2022] [https://wiki.math.wisc.edu/index.php/Graduate_Algebraic_Geometry_Seminar_Spring_2022 Spring 2022]  


[https://www.math.wisc.edu/wiki/index.php/Graduate_Algebraic_Geometry_Seminar_Fall_2018 Fall 2018]
[https://hilbert.math.wisc.edu/wiki/index.php/Graduate_Algebraic_Geometry_Seminar_Fall_2021 Fall 2021] [https://www.math.wisc.edu/wiki/index.php/Graduate_Algebraic_Geometry_Seminar_Spring_2021 Spring 2021]


[https://www.math.wisc.edu/wiki/index.php/Graduate_Algebraic_Geometry_Seminar_Spring_2018 Spring 2018]
[https://www.math.wisc.edu/wiki/index.php/Graduate_Algebraic_Geometry_Seminar_Fall_2020 Fall 2020] [https://www.math.wisc.edu/wiki/index.php/Graduate_Algebraic_Geometry_Seminar_Spring_2020 Spring 2020]


[https://www.math.wisc.edu/wiki/index.php/Graduate_Algebraic_Geometry_Seminar_Fall_2017 Fall 2017]
[https://www.math.wisc.edu/wiki/index.php/Graduate_Algebraic_Geometry_Seminar_Fall_2019 Fall 2019] [https://www.math.wisc.edu/wiki/index.php/Graduate_Algebraic_Geometry_Seminar_Spring_2019 Spring 2019]


[https://www.math.wisc.edu/wiki/index.php/Graduate_Algebraic_Geometry_Seminar_Spring_2017 Spring 2017]
[https://www.math.wisc.edu/wiki/index.php/Graduate_Algebraic_Geometry_Seminar_Fall_2018 Fall 2018] [https://www.math.wisc.edu/wiki/index.php/Graduate_Algebraic_Geometry_Seminar_Spring_2018 Spring 2018]


[https://www.math.wisc.edu/wiki/index.php/Graduate_Algebraic_Geometry_Seminar_Fall_2016 Fall 2016]
[https://www.math.wisc.edu/wiki/index.php/Graduate_Algebraic_Geometry_Seminar_Fall_2017 Fall 2017] [https://www.math.wisc.edu/wiki/index.php/Graduate_Algebraic_Geometry_Seminar_Spring_2017 Spring 2017]


[https://www.math.wisc.edu/wiki/index.php/Graduate_Algebraic_Geometry_Seminar_Spring_2016 Spring 2016]
[https://www.math.wisc.edu/wiki/index.php/Graduate_Algebraic_Geometry_Seminar_Fall_2016 Fall 2016] [https://www.math.wisc.edu/wiki/index.php/Graduate_Algebraic_Geometry_Seminar_Spring_2016 Spring 2016]


[https://www.math.wisc.edu/wiki/index.php/Graduate_Algebraic_Geometry_Seminar_(Fall_2015) Fall 2015]
[https://www.math.wisc.edu/wiki/index.php/Graduate_Algebraic_Geometry_Seminar_(Fall_2015) Fall 2015]

Latest revision as of 18:36, 11 December 2023

When: 4:30-5:30 PM on Wednesday.

Where: Van Vleck B119

Toby the OFFICIAL mascot of GAGS!!

Who: All undergraduate and graduate students interested in algebraic geometry, commutative algebra, and related fields are welcome to attend.

Why: The purpose of this seminar is to learn algebraic geometry and commutative algebra by giving and listening to talks in a informal setting. Sometimes people present an interesting paper they find. Other times people give a prep talk for the Algebraic Geometry Seminar. Other times people give a series of talks on a topic they have been studying in-depth. Regardless the goal of GAGS is to provide a supportive and inclusive place for all to learn more about algebraic geometry and commutative algebra.

How: If you want to get emails regarding time, place, and talk topics (which are often assigned quite last minute) add yourself to the gags mailing list: gags@g-groups.wisc.edu by sending an email to gags+subscribe@g-groups.wisc.edu. If you prefer (and are logged in under your wisc google account) the list registration page is here.

Organizers: John Cobb, Yu (Joey) Luo

Give a talk!

We need volunteers to give talks this semester. Beginning graduate students are particularly encouraged to give a talk, since it's a great way to get your feet wet with the material. If you would like some talk ideas, see the list on the main page. Sign up here.

Wishlist

This was assembled using input from an interest form at the beginning of the semester. Choose one and you will have the rare guarantee of having one interested audience member. Feel free to add your own.

  • Hilbert Schemes
  • Geothendieck '66, "On the de Rham Cohomology of Algebraic Varieties"
  • A History of the Weil Conjectures
  • A pre talk for any other upcoming talk
  • Weil Conjectures, GAGA theorems, surfaces of general type, moduli spaces, moduli of curves, mixed characteristics (stuff), elliptic curves, abelian varieties, hyperelliptic curves, resolution of singularities, minimal model program (stuff).

Being an audience member

The goal of GAGS is to create a safe and comfortable space inclusive of all who wish to expand their knowledge of algebraic geometry and commutative algebra. In order to promote such an environment in addition to the standard expectations of respect/kindness all participants are asked to following the following guidelines:

  • Do Not Speak For/Over the Speaker
  • Ask Questions Appropriately

Talks

Date Speaker Title Abstract
September 13 Peter Wei Introduction to the Cartier Isomorphism (Pretalk) This is a preparatory talk for Josh Mundinger's talk on Friday. We discuss the Cartier isomorphism.
September 20
September 27 Yifan Wei p-torsions in the p-adic land and de Rham cohomology Following Tate, we will try to visualize an elliptic curve over Cp, specifically, the p-adic disk near identity. Logarithm in the p-adic land provides a nice linearization to the problem, and we'll explore what this all means. If time permits, I'll sketch the proof of Hodge-Tate decomposition. (You know something like this is coming.)
October 4 Owen Goff TBA TBA
October 11 TBA TBA TBA
October 18 Alex Hof Why Does Normalization Resolve Singularities in Codimension 1? We review the definition of the normalization of an algebraic variety, discuss the geometric intuition for it, and explain why normalizing removes codimension-1 singularities. This talk is intended to be accessible to people taking first-semester algebraic geometry.
October 25 Jack Messina Variations of Hodge Structure and Hodge Modules This talk aims to introduce Hodge modules. We will start with the classical variation of Hodge structure, and then cover some background on perverse sheaves and D-modules. From here, we can introduce pure Hodge modules. We end by mentioning mixed Hodge modules and the Saito vanishing theorem.
November 1 Yiyu Wang
November 8 John Cobb Likelihood Geometry Maximum likelihood estimation (MLE) is a fundamental task in statistics. June Huh and Bernd Sturmfels wrote a long paper that explores how characteristics of the MLE problem for algebraic statistical models are reflected in the geometry of the likelihood correspondence, a variety that ties together observed data and their maximum likelihood estimators. I’ll define these objects, frame some questions (with partial answers) about them, and give some cool facts coming from algebraic statistics. This will be adapted from a much shorter talk, so there will be plenty of time for tangents and questions!
November 15 Peter Wei Pretalk for Purnaprajna Bangere's talk
November 22 Thanksgiving Break
November 29 Yanbo Chen An Introduction to Homotopy Theory The Brown Representability theorem tells us that each generilized cohomology theory is representable, then use the suspension theorem, we get a sequence of spaces and some relations between them. This is a simple model for spectrum in algebraic topology. In this talk we will discuss this notion, give some geometric examples and explore one important problem: how to get a ``good'' category for spectra.
December 9 Kevin Dao Introduction to D-Modules On the basics of the theory of D-Modules and how it gets used.
December 13 Maya Banks Intro to weighted projective space

Past Semesters

Spring 2023

Fall 2022 Spring 2022

Fall 2021 Spring 2021

Fall 2020 Spring 2020

Fall 2019 Spring 2019

Fall 2018 Spring 2018

Fall 2017 Spring 2017

Fall 2016 Spring 2016

Fall 2015