NTS ABSTRACT: Difference between revisions

From UW-Math Wiki
Jump to navigation Jump to search
No edit summary
Line 26: Line 26:
| bgcolor="#BCD2EE"  align="center" | Discrete Log problem for the algebraic group PGL_2.
| bgcolor="#BCD2EE"  align="center" | Discrete Log problem for the algebraic group PGL_2.
|-
|-
| bgcolor="#BCD2EE"  | abstract coming soon.
| bgcolor="#BCD2EE"  | We consider the problem of finding a shortest path between a given pair of vertices in the LPS Ramanujan graphs $X_{p,q}$ where $p$ is a fixed prime number and $q$ is an integer. We give a polynomial time algorithm in $\log(q)$ which returns a shortest path between  two diagonal vertices under a standard conjecture on the distribution of integers representable as sum of two squares and assuming one can factor quickly. Numerically, for a typical pair of vertices corresponded to diagonal elements the minimal path has a length about $3\log(q)+ O(1)$ while provably, there are pairs of points with distance at least $4\log(q)+ O(1)$ .  For a general pair of vertices, we write it as a product of three Euler angels and as a result for a typical pair we find a path with distance $9 \log(q)+ O(1)$.
 


|}                                                                         
|}                                                                         

Revision as of 20:05, 14 September 2016

Return to NTS Spring 2016

Sep 8

Arunabha Biswas
Limiting values of higher Mahler Measure and cyclotomic polynomials.
We consider the k-higher Mahler measure m_k(P) of a Laurent polynomial P as the integral of log^k |P| over the complex unit circle. In number theory, Lehmer's conjecture and the appearance of higher Mahler measures in L-functions are the main sources of motivation for studying various properties of m_k(P). Beyond number theory, Mahler measure has connections with topological entropies of dynamical systems and polynomial knot invariants. In this talk I shall present (1) an explicit formula for the value of |m_k(P)|/k! as k approaches infinity, (2) some asymptotic results regarding m_k(P) and (3) a scheme to approximate special values of a class of L-functions.


Sep 15

Naser T. Sardari
Discrete Log problem for the algebraic group PGL_2.
We consider the problem of finding a shortest path between a given pair of vertices in the LPS Ramanujan graphs $X_{p,q}$ where $p$ is a fixed prime number and $q$ is an integer. We give a polynomial time algorithm in $\log(q)$ which returns a shortest path between two diagonal vertices under a standard conjecture on the distribution of integers representable as sum of two squares and assuming one can factor quickly. Numerically, for a typical pair of vertices corresponded to diagonal elements the minimal path has a length about $3\log(q)+ O(1)$ while provably, there are pairs of points with distance at least $4\log(q)+ O(1)$ . For a general pair of vertices, we write it as a product of three Euler angels and as a result for a typical pair we find a path with distance $9 \log(q)+ O(1)$.



Sep 22

Alex Smith
title coming soon
abstract coming soon


Sep 29

Steve Lester
title coming soon
abstract coming soon


Oct 6

Nicole Looper
Arboreal Galois representations of higher degree polynomials and Odoni's Conjecture
Since the mid-1980s, when the study of arboreal Galois representations first began, most results have concerned the representations induced by quadratic rational maps. In the higher degree case, by contrast, very little has been known. I will discuss some recent results pertaining to higher degree polynomials over number fields. This will include a partial solution to a conjecture made by R.W.K. Odoni in 1985.


Oct 13

Ling Long
title coming soon
abstract coming soon


Oct 20

Jack Klys
title coming soon
abstract coming soon


Oct 27

William Duke


Nov 3


Nov 10


Nov 17


Dec 1


Dec 8


Dec 15

Efrat Bank
Primes in short intervals on curves over finite fields
abstract coming soon