Algebraic Geometry Seminar Fall 2017: Difference between revisions
Jump to navigation
Jump to search
Line 27: | Line 27: | ||
== Abstracts == | == Abstracts == | ||
===Michael Brown=== | |||
''' | '''Topological K-theory of equivariant singularity categories''' | ||
This is joint work with Tobias Dyckerhoff. Topological K-theory of complex-linear dg categories is a notion introduced by Blanc in his recent article "Topological K-theory of complex noncommutative spaces". In this talk, I will discuss a calculation of the topological K-theory of the dg category of graded matrix factorizations associated to a quasi-homogeneous polynomial with complex coefficients in terms of a classical topological invariant of a complex hypersurface singularity: the Milnor fiber and its monodromy. | |||
Revision as of 18:08, 22 August 2017
The seminar meets on Fridays at 2:25 pm in Van Vleck B321.
Here is the schedule for the previous semester.
Algebraic Geometry Mailing List
- Please join the AGS Mailing List to hear about upcoming seminars, lunches, and other algebraic geometry events in the department (it is possible you must be on a math department computer to use this link).
Fall 2017 Schedule
date | speaker | title | host(s) |
---|---|---|---|
September 15 | Michael Brown (UW-Madison) | Topological K-theory of equivariant singularity categories | local |
Abstracts
Michael Brown
Topological K-theory of equivariant singularity categories
This is joint work with Tobias Dyckerhoff. Topological K-theory of complex-linear dg categories is a notion introduced by Blanc in his recent article "Topological K-theory of complex noncommutative spaces". In this talk, I will discuss a calculation of the topological K-theory of the dg category of graded matrix factorizations associated to a quasi-homogeneous polynomial with complex coefficients in terms of a classical topological invariant of a complex hypersurface singularity: the Milnor fiber and its monodromy.