Graduate Algebraic Geometry Seminar: Difference between revisions

From UW-Math Wiki
Jump to navigation Jump to search
No edit summary
Line 116: Line 116:
| bgcolor="#E0E0E0"| February 6
| bgcolor="#E0E0E0"| February 6
| bgcolor="#C6D46E"| Vlad Sotirov
| bgcolor="#C6D46E"| Vlad Sotirov
| bgcolor="#BCE2FE"|[[Graduate Algebraic Geometry Seminar#February 6| Heisenberg Groups and the Fourier Transform]]
| bgcolor="#BCE2FE"|[[#February 6| Heisenberg Groups and the Fourier Transform]]
|-
|-
| bgcolor="#E0E0E0"| February 13
| bgcolor="#E0E0E0"| February 13
| bgcolor="#C6D46E"| David Wagner
| bgcolor="#C6D46E"| David Wagner
| bgcolor="#BCE2FE"|[[Graduate Algebraic Geometry Seminar#February 13| DG potpourri]]
| bgcolor="#BCE2FE"|[[#February 13| DG potpourri]]
|-
|-
| bgcolor="#E0E0E0"| February 20
| bgcolor="#E0E0E0"| February 20
| bgcolor="#C6D46E"| Caitlyn Booms
| bgcolor="#C6D46E"| Caitlyn Booms
| bgcolor="#BCE2FE"|[[Graduate Algebraic Geometry Seminar#February 20| Completions of Noncatenary Local Domains and UFDs]]
| bgcolor="#BCE2FE"|[[#February 20| Completions of Noncatenary Local Domains and UFDs]]
|-
|-
| bgcolor="#E0E0E0"| February 27
| bgcolor="#E0E0E0"| February 27
| bgcolor="#C6D46E"| Sun Woo Park
| bgcolor="#C6D46E"| Sun Woo Park
| bgcolor="#BCE2FE"|[[Graduate Algebraic Geometry Seminar#February 27| Baker’s Theorem]]
| bgcolor="#BCE2FE"|[[#February 27| Baker’s Theorem]]
|-
|-
| bgcolor="#E0E0E0"| March 6
| bgcolor="#E0E0E0"| March 6
| bgcolor="#C6D46E"| Connor Simpson
| bgcolor="#C6D46E"| Connor Simpson
| bgcolor="#BCE2FE"|[[Graduate Algebraic Geometry Seminar#March 6| Mason's Conjectures and Chow Rings of Matroids]]
| bgcolor="#BCE2FE"|[[#March 6| Mason's Conjectures and Chow Rings of Matroids]]
|-
|-
| bgcolor="#E0E0E0"| March 13
| bgcolor="#E0E0E0"| March 13
| bgcolor="#C6D46E"| Brandon Boggess
| bgcolor="#C6D46E"| Brandon Boggess
| bgcolor="#BCE2FE"|[[Graduate Algebraic Geometry Seminar#March 13| Dial M_1,1 for moduli]]
| bgcolor="#BCE2FE"|[[#March 13| Dial M_1,1 for moduli]]
|-
|-
| bgcolor="#E0E0E0"| March 27
| bgcolor="#E0E0E0"| March 27
| bgcolor="#C6D46E"| Solly Parenti
| bgcolor="#C6D46E"| Solly Parenti
| bgcolor="#BCE2FE"|[[Graduate Algebraic Geometry Seminar#March 27| Title]]
| bgcolor="#BCE2FE"|[[#March 27| Title]]
|-
|-
| bgcolor="#E0E0E0"| April 3
| bgcolor="#E0E0E0"| April 3
| bgcolor="#C6D46E"| Colin Crowley
| bgcolor="#C6D46E"| Colin Crowley
| bgcolor="#BCE2FE"|[[Graduate Algebraic Geometry Seminar#April 3| Title]]
| bgcolor="#BCE2FE"|[[#April 3| Title]]
|-
|-
| bgcolor="#E0E0E0"| April 10
| bgcolor="#E0E0E0"| April 10
| bgcolor="#C6D46E"| Alex Hof
| bgcolor="#C6D46E"| Alex Hof
| bgcolor="#BCE2FE"|[[Graduate Algebraic Geometry Seminar#April 10| Kindergarten GAGA]]
| bgcolor="#BCE2FE"|[[#April 10| Kindergarten GAGA]]
|-
|-
| bgcolor="#E0E0E0"| April 17
| bgcolor="#E0E0E0"| April 17
| bgcolor="#C6D46E"| Soumya Sankar
| bgcolor="#C6D46E"| Soumya Sankar
| bgcolor="#BCE2FE"|[[Graduate Algebraic Geometry Seminar#April 17| Title]]
| bgcolor="#BCE2FE"|[[#April 17| Title]]
|-
|-
| bgcolor="#E0E0E0"| April 24
| bgcolor="#E0E0E0"| April 24
| bgcolor="#C6D46E"| Wendy Cheng
| bgcolor="#C6D46E"| Wendy Cheng
| bgcolor="#BCE2FE"|[[Graduate Algebraic Geometry Seminar#April 24| Title]]
| bgcolor="#BCE2FE"|[[#April 24| Title]]
|-
|-
| bgcolor="#E0E0E0"| May 1
| bgcolor="#E0E0E0"| May 1
| bgcolor="#C6D46E"| Shengyuan Huang
| bgcolor="#C6D46E"| Shengyuan Huang
| bgcolor="#BCE2FE"|[[Graduate Algebraic Geometry Seminar#May 1| Orbifold Singular Cohomology]]
| bgcolor="#BCE2FE"|[[#May 1| Orbifold Singular Cohomology]]
|}
|}
</center>
</center>

Revision as of 00:33, 28 February 2019

When: Wednesdays 4:25pm

Where: Van Vleck B317 (Spring 2019)

Lizzie the OFFICIAL mascot of GAGS!!

Who: All undergraduate and graduate students interested in algebraic geometry, commutative algebra, and related fields are welcome to attend.

Why: The purpose of this seminar is to learn algebraic geometry and commutative algebra by giving and listening to talks in a informal setting. Talks are typically accessible to beginning graduate students and take many different forms. Sometimes people present an interesting paper they find. Other times people give a prep talk for the Friday Algebraic Geometry Seminar. Other times people give a series of talks on a topic they have been studying in-depth. Regardless the goal of GAGS is to provide a supportive and inclusive place for all to learn more about algebraic geometry and commutative algebra.

How: If you want to get emails regarding time, place, and talk topics (which are often assigned quite last minute) add yourself to the gags mailing list: gags@lists.wisc.edu. The list registration page is here.

Give a talk!

We need volunteers to give talks this semester. If you're interested contact Caitlyn or David, or just add yourself to the list (though in that case we might move your talk later without your permission). Beginning graduate students are particularly encouraged to give a talk, since it's a great way to get your feet wet with the material.

Being an audience member

The goal of GAGS is to create a safe and comfortable space inclusive of all who wish to expand their knowledge of algebraic geometry and commutative algebra. In order to promote such an environment in addition to the standard expectations of respect/kindness all participants are asked to following the following guidelines:

  • Do Not Speak For/Over the Speaker:
  • Ask Questions Appropriately:

The List of Topics that we Made February 2018

On February 21st of the Month of February of The 2018th Year of the Seventh Age of The Sun, the People Present at GAGS Compiled Ye Followinge Liste of Topics They Wished to Hear Aboute:

Feel free to edit the list and/or add references to learn this stuff from. Since then, we've succeeded in talking about some of these, which doesn't mean there shouldn't be another talk. Ask around or look at old semester's websites.

  • Schubert Calculus, aka how many lines intersect four given lines in three-dimensional space? The answer to this question is prettiest when you think about it as a problem of intersecting subvarieties in the Grassmanian. What is the Grassmanian, you say? That's probably a talk we should have every year, so you should give it!
  • Kindergarten GAGA. GAGA stands for Algebraic Geometry - Analytic Geometry. Serre wrote a famous paper explaining how the two are related, and you could give an exposition suitable to kindergardeners.
  • Katz and Mazur explanation of what a modular form is. What is it?
  • Kindergarten moduli of curves.
  • What is a dualizing sheaf? What is a dualizing complex? What is Serre duality? What is local duality? Can local duality help us understand Serre duality?
  • Generalizations of Riemann - Roch. (Grothendieck - Riemann - Roch? Hirzebruch - Riemann - Roch?)
  • Hodge theory for babies
  • What is a Néron model?
  • What and why is a dessin d'enfants?
  • DG Schemes.


Ed Dewey's Wish List Of Olde

Back in the day Ed and Nathan made this list of topics they wanted to hear. They all sound super duper cool, but it's also true that they had many years of AG behind their backs, so this list might not be very representative of what the GAGS audience wants to hear bout.

Here are the topics we're DYING to learn about! Please consider looking into one of these topics and giving one or two GAGS talks.

Specifically Vague Topics

  • D-modules 101: basics of D-modules, equivalence between left and right D-modules, pullbacks, pushforwards, maybe the Gauss-Manin Connection. Claude Sabbah's introduction to the subject could be a good place to start.
  • Sheaf operations on D-modules (the point is that then you can get a Fourier-Mukai transform between certain O-modules and certain D-modules, which is more or less how geometric Langlands is supposed to work)

Famous Theorems

Interesting Papers & Books

  • Symplectic structure of the moduli space of sheaves on an abelian or K3 surface - Shigeru Mukai.
  • Residues and Duality - Robin Hatshorne.
    • Have you heard of Serre Duality? Would you like to really understand the nuts and bolts of it and its generalizations? If so this book is for you. (You wouldn't need to read the whole book to give a talk ;).)
  • Coherent sheaves on P^n and problems in linear algebra - A. A. Beilinson.
    • In this two page paper constructs the semi-orthogonal decomposition of the derived category of coherent sheaves on projective space. (This topic is very important, and there are a ton of other resources for this result and the general theory of derived categories.)
  • Frobenius splitting and cohomology vanishing for Schubert varieties - V.B. Mehta and A. Ramanathan.
    • In characteristic p the fact that (x+y)^p=x^p+y^p means that one has the Frobenius morphism, which sends f to f^p. In this paper the authors introduce the notion of what it means for a variety to be Frobenius split, and use this to prove certain cohomologcal vanishing results for Schubert varieties. Since then Frobenius splitting -- and its related cousins (F-regularity, strong F-regularity, F-purity, etc.) have played large roles in geometry and algebra in characteristic p. This is a good place to get a sense for what kicked all this stuff off!
  • Schubert Calculus - S. L. Kleiman and Dan Laksov.
    • An introduction to Schubert calculus suitable for those of all ages. I am told the paper essentially only uses linear algebra!
  • Rational Isogenies of Prime Degree - Barry Mazur.
    • In this paper Mazur classifies all isogenies of rational elliptic curves of prime order. As a result of this he deduces his famous result that the torsion subgroup of an elliptic curve (over Q) is one of 15 abelian groups. This definitely stares into the land of number theory, but certainly would still be of interest to many.
  • Esquisse d’une programme - Alexander Grothendieck.
    • Originating from a grant proposal in the mid 1980's this famous paper outlines a tantalizing research program, which seeks to tie numerous different areas of math (algebraic geometry, Teichmuller theory, Galois theory, etc.) together. This is where Grothendieck introduced his famous Lego game and dessin d'enfant. While just a research proposal this paper has seemingly inspired a ton of cool math, and will allow you to "blow peoples’ minds". (The original paper is in French, but there are English translations out there.)
  • Géométrie algébraique et géométrie analytique - J.P. Serre.
    • A projective variety X over the complex numbers has two lives, an algebraic and an analytic, depending on which topology one wishes to work with. That is one can think about X as a complex manifold and work with holomorphic functions or as an algebraic variety and work with regular functions. Hence to any complex projective variety we have two sheaf theories and as a result two cohomology theories. In this famous paper Serre compares these two and shows they are in fact the same. (Note: This is a super fundamental result that is used all the time; normally in the following way: Uhh... What do you mean by cohomology? Well by GAGA or something it doesn't really mater.) (The original paper is in French, but there are English translations out there.)
  • Limit linear series: Basic theory- David Eisenbud and Joe Harris.
    • One of the more profitable tools -- especially when studying moduli spaces -- in a geometers tool box is the theory of degenerations. However, sometimes we care about more than just the variety we are degenerating and want to keep track of things like vector/line bundles. In this paper Eisenbud and Harris develop the theory of degenerating a curve together with a linear series. From this they prove a ton of cool results: M_g is of general type for g>24, Brill-Noether theory, etc.
  • Picard Groups of Moduli Problems - David Mumford.
    • This paper is essentially the origin of algebraic stacks.
  • The Structure of Algebraic Threefolds: An Introduction to Mori's Program - Janos Kollar
    • This paper is an introduction to Mori's famous ``minimal model program, which is a far reaching program seeking to understand the birational geometry of higher dimensional varieties.
  • Cayley-Bacharach Formulas - Qingchun Ren, Jürgen Richter-Gebert, Bernd Sturmfels.
    • A classical result we all learn in a first semester of algebraic geometry is that 5 points in the plane (in general position) determine a unique plane conic. One can similarly show that 9 (general) points in the plane determine a unique plane cubic curve. This paper tries to answer the question: ``What is equation for this cubic curve?.
  • On Varieties of Minimal Degree (A Centennial Approach) - David Eisenbud and Joe Harris.
    • Suppose X is a projective variety embedded in projective space so that X is not contained in any hyperplane. By projecting from general points one can see that the degree of X is at least codim(X)+1. This paper discusses the classification of varieties that achieve this lower degree bound i.e. varieties of minimal degree. This topic is quite classical and the paper seems to contain a nice mixture of classical and modern geometry.
  • The Gromov-Witten potential associated to a TCFT - Kevin J. Costello.
    • This seems incredibly interesting, but fairing warning this paper has been described as highly technical, which considering it uses A-infinity algebras and the derived category of a Calabi-Yau seems like a reasonable description. (This paper may be covered in Caldararu's Spring 2017 topics course.)


Spring 2019

Date Speaker Title (click to see abstract)
February 6 Vlad Sotirov Heisenberg Groups and the Fourier Transform
February 13 David Wagner DG potpourri
February 20 Caitlyn Booms Completions of Noncatenary Local Domains and UFDs
February 27 Sun Woo Park Baker’s Theorem
March 6 Connor Simpson Mason's Conjectures and Chow Rings of Matroids
March 13 Brandon Boggess Dial M_1,1 for moduli
March 27 Solly Parenti Title
April 3 Colin Crowley Title
April 10 Alex Hof Kindergarten GAGA
April 17 Soumya Sankar Title
April 24 Wendy Cheng Title
May 1 Shengyuan Huang Orbifold Singular Cohomology

February 6

Vladimir Sotirov
Title: Heisenberg Groups and the Fourier Transform

Abstract: I will discuss the relationship between Fourier transforms and the Heisenberg groups, with a view toward the discussion of line bundles on complex tori that appears in Polishchuk's book Abelian Varieties, Theta functions, and the Fourier transform.

February 13

David Wagner
Title: DG potpourri
Abstract: I will explain how differential graded categories made their way into AG as a way to solve some of the inadequacies of the ordinary derived category. We will then give examples of the utility of DG techniques.


Dg-meme.png

February 20

Caitlyn Booms
Title: Completions of Noncatenary Local Domains and UFDs
Abstract: A ring is called catenary if for any pair of prime ideals P contained in Q, all saturated chains of prime ideals between P and Q have the same length.

In this talk, I will introduce the necessary background about noncatenary rings and completions of local (Noetherian) domains, as well as the relevant history. Then, I will give the characterization of completions of noncatenary local domains and noncatenary local UFDs, which I will use to describe examples of very strange rings.

February 27

Sun Woo Park
Title: Baker's Theorem
Abstract: As a follow up talk to last semester, I will state and prove Baker’s theorem, a classical theorem which uses Newton Polygons to count the genus of a given curve. I will also briefly sketch how one can use Newton polygons to understand resolution of singularities of a given curve over valuation rings.


Error creating thumbnail: File missing

March 6

Connor Simpson
Title: Mason's Conjectures and Chow Rings of Matroids
Abstract: A matroid is a combinatorial structure that abstracts many different notions of independence, including linear independence in a vector space. Mason's Conjectures are a series of three increasingly strong inequalities on certain numerical invariants of matroids, the weakest of which resisted proof for over 40 years until its resolution in 2015. However, in the years since, all of Mason's conjectures have become theorems!

In this talk, we will introduce matroids and the Chow ring of a matroid, the amazing algebraic gadget used to prove Mason's first conjecture. Finally, outline the proof of Mason's second conjecture (work of our very own Botong Wang & coauthors).

March 13

Brandon Boggess
Title: Dial M_1,1 for moduli
Abstract: We will speculate wildly about what kind of object the moduli space of elliptic curves should be. I don't know what a stack is, and I promise not to try to define one.

March 27

Solly Parenti
Title:
Abstract:

April 3

Colin Crowley
Title:
Abstract:

April 10

Alex Hof
Title:
Abstract:

April 17

Soumya Sankar
Title:
Abstract:

April 24

Name
Title:
Abstract:

May 1

Shengyuan Huang
Title: Orbifold Singular Cohomology
Abstract:

Organizers' Contact Info

Caitlyn Booms

David Wagner

Moisés Herradón Cueto

Past Semesters

Fall 2018

Spring 2018

Fall 2017

Spring 2017

Fall 2016

Spring 2016

Fall 2015