NTSGrad Spring 2020/Abstracts: Difference between revisions
Jump to navigation
Jump to search
Soumyasankar (talk | contribs) (Created page with "This page contains the titles and abstracts for talks scheduled in the Spring 2020 semester. To go back to the main GNTS page, click here. == Jan 21 =...") |
Soumyasankar (talk | contribs) No edit summary |
||
Line 12: | Line 12: | ||
| bgcolor="#BCD2EE" | | | bgcolor="#BCD2EE" | | ||
In this talk I will talk about the relation between representation theory and arithmetic geometry. In particular, I will try to discuss several examples that connect representation theory and arithmetic geometry closely. Then if time permits, I will give a brief introduction to trace formula approach, which is the most powerful and promising tools in this field. | In this talk I will talk about the relation between representation theory and arithmetic geometry. In particular, I will try to discuss several examples that connect representation theory and arithmetic geometry closely. Then if time permits, I will give a brief introduction to trace formula approach, which is the most powerful and promising tools in this field. | ||
|} | |||
</center> | |||
<br> | |||
== Jan 28 == | |||
<center> | |||
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20" | |||
|- | |||
| bgcolor="#F0A0A0" align="center" style="font-size:125%" | '''Asvin Gothandaraman''' | |||
|- | |||
| bgcolor="#BCD2EE" align="center" | ''Modular forms and class groups'' | |||
|- | |||
| bgcolor="#BCD2EE" | | |||
In preparation for Thursday's talk, I will review some concepts from Galois Cohomology. I will also give an introduction to the Herbrand-Ribet theorem. | |||
|} | |} | ||
</center> | </center> | ||
<br> | <br> |
Revision as of 15:02, 27 January 2020
This page contains the titles and abstracts for talks scheduled in the Spring 2020 semester. To go back to the main GNTS page, click here.
Jan 21
Qiao He |
Representation theory and arithmetic geometry |
In this talk I will talk about the relation between representation theory and arithmetic geometry. In particular, I will try to discuss several examples that connect representation theory and arithmetic geometry closely. Then if time permits, I will give a brief introduction to trace formula approach, which is the most powerful and promising tools in this field. |
Jan 28
Asvin Gothandaraman |
Modular forms and class groups |
In preparation for Thursday's talk, I will review some concepts from Galois Cohomology. I will also give an introduction to the Herbrand-Ribet theorem. |