NTS/Abstracts: Difference between revisions
Line 1: | Line 1: | ||
== Anton Gershaschenko == | |||
<center> | |||
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20" | |||
|- | |||
| bgcolor="#DDDDDD" align="center"| Title: Moduli of Representations of Unipotent Groups | |||
|- | |||
| bgcolor="#DDDDDD"| | |||
Abstract: Representations of reductive groups are discretely parameterized, but unipotent groups can have non-trivial families of representations, so it makes sense try to construct and understand a moduli stack (or space) of representations of a given unipotent group. If you restrict to certain kinds of representations, it is possible to actually get your hands on the moduli stack and to construct a moduli space. I'll summarize the few things I know about the general case and then give you a tour of some interesting features that appear in small examples. | |||
|} | |||
</center> | |||
<br> | |||
== Anton Gershaschenko == | == Anton Gershaschenko == | ||
Revision as of 17:45, 3 June 2011
Anton Gershaschenko
Title: Moduli of Representations of Unipotent Groups |
Abstract: Representations of reductive groups are discretely parameterized, but unipotent groups can have non-trivial families of representations, so it makes sense try to construct and understand a moduli stack (or space) of representations of a given unipotent group. If you restrict to certain kinds of representations, it is possible to actually get your hands on the moduli stack and to construct a moduli space. I'll summarize the few things I know about the general case and then give you a tour of some interesting features that appear in small examples. |
Anton Gershaschenko
Title: Moduli of Representations of Unipotent Groups |
Abstract: Representations of reductive groups are discretely parameterized, but unipotent groups can have non-trivial families of representations, so it makes sense try to construct and understand a moduli stack (or space) of representations of a given unipotent group. If you restrict to certain kinds of representations, it is possible to actually get your hands on the moduli stack and to construct a moduli space. I'll summarize the few things I know about the general case and then give you a tour of some interesting features that appear in small examples. |
Organizer contact information
Zev Klagsbrun
Return to the Number Theory Seminar Page
Return to the Algebra Group Page