NTS ABSTRACTSpring2023: Difference between revisions
Jump to navigation
Jump to search
(→Feb 09) |
(→Feb 02) |
||
Line 7: | Line 7: | ||
| bgcolor="#F0A0A0" align="center" style="font-size:125%" | '''Asvin Gothandaraman''' | | bgcolor="#F0A0A0" align="center" style="font-size:125%" | '''Asvin Gothandaraman''' | ||
|- | |- | ||
| bgcolor="#BCD2EE" align="center" | | | bgcolor="#BCD2EE" align="center" | A p-adic Chebotarev density theorem | ||
|- | |- | ||
| bgcolor="#BCD2EE" | | | bgcolor="#BCD2EE" | | ||
Line 19: | Line 19: | ||
<br> | <br> | ||
== Feb 09 == | == Feb 09 == |
Revision as of 16:40, 6 February 2023
Feb 02
Asvin Gothandaraman |
A p-adic Chebotarev density theorem |
We (Asvin G, Yifan Wei and John Yin) define a notion of splitting density for "nice" generically finite maps over p-adic fields and show that these densities satisfy a functional equation. As a consequence, we prove a conjecture about factorization probabilities of Bhargava, Cremona, Fisher, Gajovic.
|
Feb 09
MSRI/SLMath workshop |
NTS of the week is cancelled as most of the number theory group are attending the MSRI/SLMath introductory workshop on Diophantine geometry, see https://www.msri.org/workshops/977 |