NTS ABSTRACTSpring2023: Difference between revisions
No edit summary |
No edit summary |
||
Line 26: | Line 26: | ||
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20" | {| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20" | ||
|- | |- | ||
| bgcolor="#F0A0A0" align="center" style="font-size:125%" | MSRI/SLMath workshop | | bgcolor="#F0A0A0" align="center" style="font-size:125%" | '''MSRI/SLMath workshop''' | ||
|- | |- | ||
| bgcolor="#BCD2EE" align="center" | Introductory workshop on Diophantine Geometry | | bgcolor="#BCD2EE" align="center" | Introductory workshop on Diophantine Geometry | ||
Line 45: | Line 45: | ||
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20" | {| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20" | ||
|- | |- | ||
| bgcolor="#F0A0A0" align="center" style="font-size:125%" | MSRI/SLMath workshop | | bgcolor="#F0A0A0" align="center" style="font-size:125%" | '''MSRI/SLMath workshop''' | ||
|- | |- | ||
| bgcolor="#BCD2EE" align="center" | Shimura Varieties and L functions | | bgcolor="#BCD2EE" align="center" | Shimura Varieties and L functions | ||
Line 64: | Line 64: | ||
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20" | {| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20" | ||
|- | |- | ||
| bgcolor="#F0A0A0" align="center" style="font-size:125%" | | | bgcolor="#F0A0A0" align="center" style="font-size:125%" | '''MSRI/SLMath workshop''' | ||
|- | |- | ||
| bgcolor="#BCD2EE" align="center" | Degeneracy of Algebraic Points | | bgcolor="#BCD2EE" align="center" | Degeneracy of Algebraic Points |
Revision as of 16:50, 6 February 2023
Feb 02
Asvin Gothandaraman |
A p-adic Chebotarev density theorem and functional equation |
We (Asvin G, Yifan Wei and John Yin) define a notion of splitting density for "nice" generically finite maps over p-adic fields and show that these densities satisfy a functional equation. As a consequence, we prove a conjecture about factorization probabilities of Bhargava, Cremona, Fisher, Gajovic.
|
Feb 09
MSRI/SLMath workshop |
Introductory workshop on Diophantine Geometry |
NTS of the week is cancelled as most of the number theory group are attending the MSRI/SLMath introductory workshop on Diophantine Geometry, see https://www.msri.org/workshops/977. |
March 16
MSRI/SLMath workshop |
Shimura Varieties and L functions |
NTS of the week is cancelled as most of the number theory group are attending the MSRI/SLMath workshop on Shimura Varieties and L functions, see https://www.msri.org/workshops/1032. |
April 27
MSRI/SLMath workshop |
Degeneracy of Algebraic Points |
NTS of the week is cancelled as most of the number theory group are attending the MSRI/SLMath workshop on Degeneracy of Algebraic Points, see https://www.msri.org/workshops/1040. |