Symplectic Geometry Seminar: Difference between revisions

From UW-Math Wiki
Jump to navigation Jump to search
Line 24: Line 24:
== Abstracts ==
== Abstracts ==


'''Ruifang Song''' '' ''
'''Ruifang Song''' ''The Picard-Fuchs equations of Calabi-Yau hypersurfaces in partial flag varieties ''


Abstract
Abstract
We introduce a system of differential equations associated to a smooth algebraic variety X acted by a complex Lie group G and a G-linearlized line bundle L on X. We show that this system is holonomic and thus has finite dimensional solution space assuming G acts on X with �finitely many orbits. When X is a partial flag variety, we show that this system gives the Picard-Fuchs system of Calabi-Yau hypersurfaces in X.
In particular, when X is a toric variety, our construction recovers GKZ systems and extended GKZ systems, which have played important roles in studying periods of Calabi-Yau hypersurfaces/complete intersections in toric varieties.
In general, suppose X is a Fano variety, L is the anticanonical line bundle and G=Aut(X), this construction can be used to study the Picard-Fuchs system of Calabi-Yau hypersurfaces/complete intersections in X.


==Past Semesters ==
==Past Semesters ==
*[[ Spring 2011 Symplectic Geometry Seminar]]
*[[ Spring 2011 Symplectic Geometry Seminar]]

Revision as of 16:03, 15 September 2011

Wednesday 3:30pm-4:30pm VV B139

  • If you would like to talk in the seminar but have difficulty with adding information here, please contact Dongning Wang


date speaker title host(s)
Sept. 21st Ruifang Song The Picard-Fuchs equations of Calabi-Yau complete intersections in homogeneous spaces
Sept. 28th Dongning Wang Seidel Representation for Symplectic Orbifolds

Abstracts

Ruifang Song The Picard-Fuchs equations of Calabi-Yau hypersurfaces in partial flag varieties

Abstract

We introduce a system of differential equations associated to a smooth algebraic variety X acted by a complex Lie group G and a G-linearlized line bundle L on X. We show that this system is holonomic and thus has finite dimensional solution space assuming G acts on X with �finitely many orbits. When X is a partial flag variety, we show that this system gives the Picard-Fuchs system of Calabi-Yau hypersurfaces in X.

In particular, when X is a toric variety, our construction recovers GKZ systems and extended GKZ systems, which have played important roles in studying periods of Calabi-Yau hypersurfaces/complete intersections in toric varieties.

In general, suppose X is a Fano variety, L is the anticanonical line bundle and G=Aut(X), this construction can be used to study the Picard-Fuchs system of Calabi-Yau hypersurfaces/complete intersections in X.

Past Semesters