Algebra and Algebraic Geometry Seminar Spring 2024: Difference between revisions
Line 57: | Line 57: | ||
=== Marton Hablicsek === | === Marton Hablicsek === | ||
=== A formality result for logarithmic Hochschild (co)homology === | ==== A formality result for logarithmic Hochschild (co)homology ==== | ||
Hochschild homology is a foundational invariant for associate algebras, schemes, stacks, etc. For smooth and proper varieties X over a field of characteristic 0, Hochschild homology and its variants, like cyclic homology, are closely related to Hodge cohomology and to de Rham cohomology. For affine schemes, the Hochschild invariants are, in general, infinite dimensional. In this talk, we extend Hochschild homology to logarithmic schemes, in particular to compactifications, i.e, to pairs (X,D) where X is a smooth and proper variety and D is a simple normal crossing divisor. Using the formality theorem of Arinkin and Căldăraru, we recover an HKR isomorphism for logarithmic schemes relating logarithmic Hochschild homology to logarithmic differential forms. I will also discuss simple applications of our framework. This is a joint work with Francesca Leonardi and Leo Herr. | Hochschild homology is a foundational invariant for associate algebras, schemes, stacks, etc. For smooth and proper varieties X over a field of characteristic 0, Hochschild homology and its variants, like cyclic homology, are closely related to Hodge cohomology and to de Rham cohomology. For affine schemes, the Hochschild invariants are, in general, infinite dimensional. In this talk, we extend Hochschild homology to logarithmic schemes, in particular to compactifications, i.e, to pairs (X,D) where X is a smooth and proper variety and D is a simple normal crossing divisor. Using the formality theorem of Arinkin and Căldăraru, we recover an HKR isomorphism for logarithmic schemes relating logarithmic Hochschild homology to logarithmic differential forms. I will also discuss simple applications of our framework. This is a joint work with Francesca Leonardi and Leo Herr. |
Revision as of 20:57, 12 March 2024
The seminar normally meets 2:30-3:30pm on Fridays, in the room Van Vleck B139.
Algebra and Algebraic Geometry Mailing List
- Please join the AGS mailing list by sending an email to ags+join@g-groups.wisc.edu to hear about upcoming seminars, lunches, and other algebraic geometry events in the department (it is possible you must be on a math department computer to use this link).
Spring 2024 Schedule
date | speaker | title | host/link to talk |
---|---|---|---|
February 16 | Sean Cotner (Michigan) | Schemes of homomorphisms | Josh |
February 23 | Lingfei Yi (Minnesota) | Slices in the loop spaces of symmetric varieties | Dima/Josh |
March 1 | Shravan Patankar (UIC) | The absolute integral closure in equicharacteristic zero | Dima/Josh |
March 18 (Monday) 2:30-3:30pm | Marton Hablicsek (Leiden University) | A formality result for logarithmic Hochschild (co)homology | Dima |
March 29 | TBA | TBA | Josh |
April 18 | Teresa Yu (Michigan) | TBA | Dima/Jose |
Abstracts
Sean Cotner
Schemes of homomorphisms
Given two algebraic groups G and H, it is natural to ask whether the set Hom(G, H) of homomorphisms from G to H can be parameterized in a useful way. In general, this is not possible, but there are well-known partial positive results (mainly due to Grothendieck). In this talk I will describe essentially optimal conditions on G and H under which Hom(G, H) is a scheme. There will be many examples, and we will see how a geometric perspective on Hom(G, H) can be useful in studying concrete questions. Time permitting, I will discuss some aspects of the theory of Hom schemes over a base.
Lingfei Yi
Slices in the loop spaces of symmetric varieties
Let X be a symmetric variety. J. Mars and T. Springer constructed conical transversal slices to the closure of Borel orbits on X and used them to show that the IC-complexes for the orbit closures are pointwise pure. This is an important geometric ingredient in their work providing a more geometric approach to the results of Lusztig-Vogan. In the talk, I will discuss a generalization of Mars-Springer's construction of transversal slices to the setting of the loop space LX of X where we consider closures of spherical orbits on LX. I will also explain its applications to the formality conjecture in the relative Langlands duality. If time permits, I will discuss similar constructions for Iwahori orbits. This is a joint work with Tsao-Hsien Chen.
Shravan Patankar
The absolute integral closure in equicharacteristic zero
In spite of being large and non noetherian, the absolute integral closure of a domain R, R^{+}, carries great importance in positive characteristic commutative algebra and algebraic geometry. Recent advances due to Bhatt hint at a similar picture in mixed characteristic. In equicharacteristic zero however, this object seems largely unexplored. We answer a series of natural questions which suggest that it might play a similar central role in the study of singularities and algebraic geometry in equicharacteristic zero. More precisely, we show that it is rarely coherent, and facilitates a characterization of regular rings similar to Kunz's theorem. Both of these results, have in turn, applications back to positive characteristics.
Marton Hablicsek
A formality result for logarithmic Hochschild (co)homology
Hochschild homology is a foundational invariant for associate algebras, schemes, stacks, etc. For smooth and proper varieties X over a field of characteristic 0, Hochschild homology and its variants, like cyclic homology, are closely related to Hodge cohomology and to de Rham cohomology. For affine schemes, the Hochschild invariants are, in general, infinite dimensional. In this talk, we extend Hochschild homology to logarithmic schemes, in particular to compactifications, i.e, to pairs (X,D) where X is a smooth and proper variety and D is a simple normal crossing divisor. Using the formality theorem of Arinkin and Căldăraru, we recover an HKR isomorphism for logarithmic schemes relating logarithmic Hochschild homology to logarithmic differential forms. I will also discuss simple applications of our framework. This is a joint work with Francesca Leonardi and Leo Herr.