NTS ABSTRACTFall2024: Difference between revisions

From UW-Math Wiki
Jump to navigation Jump to search
No edit summary
No edit summary
Line 28: Line 28:
|-
|-
| bgcolor="#BCD2EE"  | We care about arithmetic invariants of polynomial equations e.g. L-functions, which (conjecturally) are often automorphic and related to special cycles on Shimura varieties (or Shimura sets) based on the relative Langlands program. Arithmetic fundamental lemmas reveal such relations in the p-adic local world. In this talk, I will study certain ``universal'’ non-reductive special cycles on local GL_n Shimura varieties, and give applications e.g. the proof of twisted arithmetic fundamental lemma for the tuple (U_n, GL_n, U_n). Time permitting, I will explain some global analogs where at least the (Betti) cohomology class of special cycles could be defined. It turns out that algebraic special cycles are often pullbacks of ``universal’’ non-algebraic cycles (e.g. from Kudla-Millson theory on non-Hermitian symmetric spaces).
| bgcolor="#BCD2EE"  | We care about arithmetic invariants of polynomial equations e.g. L-functions, which (conjecturally) are often automorphic and related to special cycles on Shimura varieties (or Shimura sets) based on the relative Langlands program. Arithmetic fundamental lemmas reveal such relations in the p-adic local world. In this talk, I will study certain ``universal'’ non-reductive special cycles on local GL_n Shimura varieties, and give applications e.g. the proof of twisted arithmetic fundamental lemma for the tuple (U_n, GL_n, U_n). Time permitting, I will explain some global analogs where at least the (Betti) cohomology class of special cycles could be defined. It turns out that algebraic special cycles are often pullbacks of ``universal’’ non-algebraic cycles (e.g. from Kudla-Millson theory on non-Hermitian symmetric spaces).
|}                                                                       
</center>
<br>
== Oct 31 ==
<center>
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"
|-
| bgcolor="#F0A0A0" align="center" style="font-size:125%" |  Faster isomorphism testing of p-groups of Frattini class-2
|-
| bgcolor="#BCD2EE"  align="center" |
|-
| bgcolor="#BCD2EE"  | The finite group isomorphism problem asks to decide whether two finite groups of order N are isomorphic. Improving the classical $N^{O(\log N)}$-time algorithm for group isomorphism is a long-standing open problem. It is generally regarded that p-groups of class 2 and exponent p form a bottleneck case for group isomorphism in general. The recent breakthrough by Sun (STOC '23) presents an $N^{O((\log N)^{5/6})}$-time algorithm for this group class. Our work sharpens the key technical ingredients in Sun's algorithm and further improves Sun's result by presenting an $N^{\tilde O((\log N)^{1/2})}$-time algorithm for this group class. Besides, we also extend the result to the more general p-groups of Frattini class-2, which includes non-abelian 2-groups. In this talk, I will present the problem background and our main algorithm in detail, and introduce some connections with other research topics. For example, one intriguing connection is with the maximal and non-commutative ranks of matrix spaces, which have recently received considerable attention in algebraic complexity and computational invariant theory. Results from the theory of Tensor Isomorphism complexity class (Grochow--Qiao, SIAM J. Comput. '23) are utilized to simplify the algorithm and achieve the extension to p-groups of Frattini class-2.
|}                                                                         
|}                                                                         
</center>
</center>


<br>
<br>

Revision as of 18:53, 28 August 2024

Back to the number theory seminar main webpage: Main page

Sep 5

'



Sep 12

Non-reductive special cycles and arithmetic fundamental lemmas
We care about arithmetic invariants of polynomial equations e.g. L-functions, which (conjecturally) are often automorphic and related to special cycles on Shimura varieties (or Shimura sets) based on the relative Langlands program. Arithmetic fundamental lemmas reveal such relations in the p-adic local world. In this talk, I will study certain ``universal'’ non-reductive special cycles on local GL_n Shimura varieties, and give applications e.g. the proof of twisted arithmetic fundamental lemma for the tuple (U_n, GL_n, U_n). Time permitting, I will explain some global analogs where at least the (Betti) cohomology class of special cycles could be defined. It turns out that algebraic special cycles are often pullbacks of ``universal’’ non-algebraic cycles (e.g. from Kudla-Millson theory on non-Hermitian symmetric spaces).


Oct 31

Faster isomorphism testing of p-groups of Frattini class-2
The finite group isomorphism problem asks to decide whether two finite groups of order N are isomorphic. Improving the classical $N^{O(\log N)}$-time algorithm for group isomorphism is a long-standing open problem. It is generally regarded that p-groups of class 2 and exponent p form a bottleneck case for group isomorphism in general. The recent breakthrough by Sun (STOC '23) presents an $N^{O((\log N)^{5/6})}$-time algorithm for this group class. Our work sharpens the key technical ingredients in Sun's algorithm and further improves Sun's result by presenting an $N^{\tilde O((\log N)^{1/2})}$-time algorithm for this group class. Besides, we also extend the result to the more general p-groups of Frattini class-2, which includes non-abelian 2-groups. In this talk, I will present the problem background and our main algorithm in detail, and introduce some connections with other research topics. For example, one intriguing connection is with the maximal and non-commutative ranks of matrix spaces, which have recently received considerable attention in algebraic complexity and computational invariant theory. Results from the theory of Tensor Isomorphism complexity class (Grochow--Qiao, SIAM J. Comput. '23) are utilized to simplify the algorithm and achieve the extension to p-groups of Frattini class-2.