Colloquia/Fall 2024: Difference between revisions

From UW-Math Wiki
Jump to navigation Jump to search
No edit summary
Tags: Manual revert Visual edit
No edit summary
Line 53: Line 53:
|-
|-
|Oct 25
|Oct 25
|
|Connor Mooney (UC Irvine)
|[[# TBA|  TBA  ]]
|[[# TBA|  TBA  ]]
|
|Albritton
|
|
|-
|-

Revision as of 10:53, 30 August 2024

Organizers: Dallas Albritton and Michael Kemeny

UW-Madison Mathematics Colloquium is on Fridays at 4:00 pm in Van Vleck B239 unless otherwise noted.

mathcolloquium@g-groups.wisc.edu is the mailing list. Everyone in the math department is subscribed.

date speaker title host(s)
Sept 6 Dan Romik (UC Davis) Sphere packing in dimension 8, Viazovska's solution, and a new human proof of her modular form inequalities Gurevitch
Sept 13 TBA
Sept 20 Alireza Golsefidy (UCSD) TBA Marshall
Sept 25 Qing Nie (UC Irvine) TBA Craciun
Oct 4 Su Gao (Nankai University) TBA Lempp
Oct 11 Mikaela Iacobelli (ETH Zurich) TBA Li
Oct 18 Guillaume Bal (U Chicago) TBA Li, Stechmann
Oct 25 Connor Mooney (UC Irvine) TBA Albritton
Nov 1 Dima Arinkin (UW-Madison) TBA
Nov 4-8 Distinguished Lectures by Maksym Radziwill (Northwestern) TBA
Nov 15 Reserved by HC TBA Stechmann
Nov 22 Reserved by HC TBA Stechmann
Nov 29 Thanksgiving holiday break
Dec 6 Reserved by HC TBA Stechmann
Dec 13 Reserved by HC TBA Stechmann

Abstracts

September 6: Dan Romik (UC Davis)

Title: Sphere packing in dimension 8, Viazovska's solution, and a new human proof of her modular form inequalities

Abstract: Maryna Viazovska in 2016 found a remarkable application of complex analysis and the theory of modular forms to a fundamental problem in geometry, obtaining a solution to the sphere packing problem in dimension 8 through an explicit construction of a so-called "magic function" that she defined in terms of classical special functions. The same method also led shortly afterwards to the solution of the sphere packing problem in dimension 24 by her and several collaborators. One component of Viazovska's proof consisted of proving a pair of inequalities satisfied by the modular forms she constructed. Viazovska gave a proof of these inequalities that relied in an essential way on computer calculations. In this talk I will describe the background leading up to Viazovska's groundbreaking proof, and present a new proof of her inequalities that uses only elementary arguments that can be easily checked by a human.