Option 2 packages: Difference between revisions
Line 86: | Line 86: | ||
== Physical Sciences == | == Physical Sciences == | ||
The physical sciences and mathematics have grown hand-in-hand since antiquity. | The physical sciences and mathematics have grown hand-in-hand since antiquity. | ||
Students with strong backgrounds in mathematics who are interested in physical sciences can find opportunities in | Students with strong backgrounds in mathematics who are also interested in a branch of the physical sciences can find opportunities in laboratories, engineering firms, education, finance, law, business, and medicine. Those with very strong academic records can find themselves as preferred candidates for graduate study in their choice of field. | ||
The following sample programs in mathematics have strong relationships with a particular area of interest in the natural sciences. | |||
=== Atmospheric & Oceanic Sciences === | === Atmospheric & Oceanic Sciences === | ||
Line 127: | Line 129: | ||
The applications of mathematics to chemistry range from the mundane: Ratios for chemical reactants; to the esoteric: Computational methods in quantum chemistry. Research in this latter topic lead to a Nobel Prize in Chemistry to John Pople[http://www.nobelprize.org/nobel_prizes/chemistry/laureates/1998/index.html] who was a mathematician. | The applications of mathematics to chemistry range from the mundane: Ratios for chemical reactants; to the esoteric: Computational methods in quantum chemistry. Research in this latter topic lead to a Nobel Prize in Chemistry to John Pople[http://www.nobelprize.org/nobel_prizes/chemistry/laureates/1998/index.html] who was a mathematician. | ||
All areas of pure and applied mathematics have applications in modern chemistry. The most accessible track features coursework focusing on applied analysis and computational math. Students with a strong interest in classical mathematics should also consider modern algebra (for group theory) and topology. | |||
'''Application Courses''' | |||
* Physics 208 or Physics 248 [http://www.physics.wisc.edu/academic/undergrads/course-descriptions] | |||
** Both of these classes have prerequisites (Physics 207/247). | |||
* Analytical Chemistry: Chem 327 or Chem 329[https://www.chem.wisc.edu/content/courses] | |||
** Prerequisite: Chem 104 or 109 | |||
* Physical Chemistry: Chem 561 and 562 | |||
'''Core Math Courses''' | |||
'''Additional Courses to Consider''' | '''Additional Courses to Consider''' | ||
'''Also:''' | '''Also:''' |
Revision as of 21:50, 29 October 2014
The Option 2 math major requires six math courses and four courses in an area of application. These four courses are required to have a certain mathematical content. They should also form a coherent collection of courses that reflect a plan to study some discipline outside of mathematics that uses a fair amount of mathematics. The selection of the four courses, together with the six required math courses must be approved by the student's advisor. This page lists some sample packages in several popular areas.
Economics and Business
Actuarial Mathematics
Actuaries use techniques in mathematics and statistics to evaluate risk in a variety of areas including insurance, finance, healthcare, and even criminal justice. In recent history the field has been revolutionized by advances in the theory of probability and the ability to access, store, and process very large data sets.
Professional actuaries are currently in great demand, have lucrative pay, and is a growth field [1]. Similar to some other fields (law, accounting, etc.) there are professional organizations which administer a series of examinations [2]. Oftentimes students complete some of these examinations before graduating which allows them to move right into a career (Note: these exams are not required for graduation).
Students who are interested in actuarial mathematics should consider coursework in probability, statistics, analysis, as well as computational mathematics.
Application Courses
- Act. Sci 650 and 652
- Act. Sci. 651 or 653
Core Math Courses
- Linear Algebra: Math 320 or Math 340 or Math 341 or Math 375
- Students who use either Math 320 or Math 340 to fulfill their Linear Algebra requirement must take Math 421 before any mathematics course numbered above 500.
- Probability: Math 309 or Math 431 or 531
- Math 431 is preferred over 309.
- Math 531 is advanced probability and may be taken only after Math 421 or Math 521.
- Statistics: Math 310
- Has the prerequisite: one of the probability courses mentioned above AND an elementary stats class (Stat 302 is recommended).
- Analysis: Math 521
- Stochastic Processes: Math 632
- Linear Programming: Math 525
Additional Courses to Consider
- Combinatorics: Math 475
Also: Students interested in the areas of mathematics with applications to actuarial science might consider the following as well:
- Advanced courses offered by the Department of Statistics or even a dual major.
- Consider combining the major with a program offered by the UW-Madison School of Business.
Business
Applications of mathematics to business is often referred to as Operations Research or Management Science. Specifically, the goal is to use mathematics to make the best decisions in a variety of areas: searching, routing, scheduling, transport, etc.
The modern version of the field grew out of the work mathematicians did in order to aid the Allied war effort during world war II.[3] Since then, the field has grown into a robust and active area of research and scholarship including several journals and professional organizations.[4]
Students interested in applications of mathematics to business can find many employment opportunities in private corporations, government agencies, nonprofit enterprises, and more. Students can also move onto postgraduate programs in mathematics or business.
Application Courses
- Linear programming and Optimization: Math 525
- Operations Research: OTM 410
- At least two from the following: Gen Bus 304; OTM 351, 411, 633, 654
- Note that OTM 633 is crosslisted with math. It cannot be used as both an application course AND a core math course.
Core Math Courses
- Linear Algebra: Math 320 or Math 340 or Math 341 or Math 375
- Students who use either Math 320 or Math 340 to fulfill their Linear Algebra requirement must take Math 421 before any mathematics course numbered above 500.
- Probability: Math 309 or Math 431 or 531
- Math 431 is preferred over 309.
- Math 531 is advanced probability and may be taken only after Math 421 or Math 521.
- Statistics: Math/Stat 310
- Analysis: Math 521
- Stochastics: Math 632
Additional Courses to Consider
- Additional courses in computational mathematics.
- Math 633.
Also: Consider combining this program with a program in the UW-Madison School of Business.
Economics
Finance
Physical Sciences
The physical sciences and mathematics have grown hand-in-hand since antiquity. Students with strong backgrounds in mathematics who are also interested in a branch of the physical sciences can find opportunities in laboratories, engineering firms, education, finance, law, business, and medicine. Those with very strong academic records can find themselves as preferred candidates for graduate study in their choice of field.
The following sample programs in mathematics have strong relationships with a particular area of interest in the natural sciences.
Atmospheric & Oceanic Sciences
Weather and climate is determined by the interaction between two thin layers which cover the planet: The oceans and the atmosphere. Understanding how these two fluids act and interact allow humans to describe historical climate trends, forecast near future weather with incredible accuracy, and hopefully describe long term climate change which will affect the future of human society.
A student interested in atmospheric and oceanic studies who has a strong mathematics background can find a career working in local, national, and international meteorological laboratories. These include private scientific consulting businesses as well as public enterprises. Students interested in graduate study could find their future studies supported by the National Science Foundation, the Department of Energy, NASA, or others [5]. There is a large amount of funding available in the area due to the relevance research findings have on energy and economic policy.
Mathematicians who work in Atmospheric and oceanic studies are drawn to the complexities of the problems and the variety of methods in both pure and applied mathematics which can be brought to bear on them. Students should take coursework in methods of applied mathematics, differential equations, computational mathematics, and differential geometry and topology.
Application Courses
- Physics 208 or Physics 248 [6]
- Both of these classes have prerequisites (Physics 207/247).
- ATM OCN 310, 311, and 330 [7]
- 310 and 330 have Physics 208/248 as a prerequisite.
Core Mathematics Courses
- Linear Algebra: Math 340 or Math 341 or Math 375
- Math 375 is an honors course.
- Differential Equations: Math 319 or Math 376
- Math 376 is an honors course.
- Applied Analysis: Math 321 and 322
- Computational Mathematics: At least one of 513 or 514
- Theory of Differential Equations: Math 519
Additional Courses to Consider
- Dynamical Systems: Math 415
- Probability: Math 309 or Math 431 or 531
- Math 431 is preferred over 309.
- Math 531 is advanced probability and may be taken only after Math 421 or Math 521.
- Computational Mathematics: 513 or 514
- Analysis: Math 521
- Differential Geometry: Math 561
- Partial Differential Equations: Math 619
Also: Students who are interested in this area might consider
- Combining the math major with the program offered by the Department of Atmospheric and Oceanic Sciences.
- The AMEP program.
Chemistry
The applications of mathematics to chemistry range from the mundane: Ratios for chemical reactants; to the esoteric: Computational methods in quantum chemistry. Research in this latter topic lead to a Nobel Prize in Chemistry to John Pople[8] who was a mathematician.
All areas of pure and applied mathematics have applications in modern chemistry. The most accessible track features coursework focusing on applied analysis and computational math. Students with a strong interest in classical mathematics should also consider modern algebra (for group theory) and topology.
Application Courses
- Physics 208 or Physics 248 [9]
- Both of these classes have prerequisites (Physics 207/247).
- Analytical Chemistry: Chem 327 or Chem 329[10]
- Prerequisite: Chem 104 or 109
- Physical Chemistry: Chem 561 and 562
Core Math Courses
Additional Courses to Consider Also:
Physics
Biological Sciences
Applications of mathematics to biology has undergone a recent boom. Historically, the biologist was perhaps most interested in applications of calculus, but now nearly any modern area of mathematical research has an application to some biological field[11]. The following lists some possibilities.
Bio-Informatics
Bioinformatics is the application of computational methods to understand biological information. Of course the most interesting items of biological information is genetic and genomic information. Considering that the human genome has over three billion basepairs [12], it's no wonder that many mathematicians find compelling problems in the area to devote their time.
Students with strong mathematical backgrounds who are interested in bioinformatics can find careers as a part of research teams in public and private laboratories across the world [13]. Moreover, many universities have established interdisciplinary graduate programs promoting this intersection of mathematics, biology, and computer science [14].
Students interested in bioinformatics should have a strong background in computational mathematics and probability. Students should also have a strong programming background.
Application Courses
- Computer Science: CS 302 and CS 367
- Bioinformatics: BMI/CS 576
- Genetics: Gen 466
- Note that this class has a prerequisite of a year of chemistry and a year of biology coursework. Please contact the UW-Madison genetics program for more information.
Core Mathematics Courses
- Linear Algebra: Math 320 or Math 340 or Math 341 or Math 375
- Students who use either Math 320 or Math 340 to fulfill their Linear Algebra requirement must take Math 421 before any mathematics course numbered above 500.
- Probability: Math 309 or Math 431 or 531
- Math 431 is preferred over 309.
- Math 531 is advanced probability and may be taken only after Math 421 or Math 521.
- Combinatorics: Math 475
Additional Courses to Consider
Also
- Students might consider combining this program with one in Computer Science or Genetics.
- Complete this major with a few additional courses if you are interested in medical school [15].
Bio-Statistics
Biostatistics is the application of mathematical statistical methods to areas of biology. Historically, one could consider the field to have been founded by Gregor Mendel himself. He used basic principles of statistics and probability to offer a theory for which genetic traits would arise from cross hybridization of plants and animals. His work was forgotten for nearly fifty years before it was rediscovered and become an integral part of modern genetic theory.
Beyond applications to genetics, applications of biostatistics range from public health policy to evaluating laboratory experimental results to tracking population dynamics in the field. Currently, health organizations consider there to be a shortage of trained biostatisticians[16]. Students interested in this area should find excellent job prospects.
Students interested in biostatistics should have strong backgrounds in probability, statistics, and computational methods.
Application Courses
- Statistics: Stat 333, 424, and 575 [17]
- Stat 333 has as a prerequisite some experience with statistical software. This can be achieved by also registering for Stat 327. Stat 327 is a single credit course which does not count for the mathematics major
- Biostatistics: at least one of Stat 641 or 642
Core Mathematics Courses
- Linear Algebra: Math 320 or Math 340 or Math 341 or Math 375
- Students who use either Math 320 or Math 340 to fulfill their Linear Algebra requirement must take Math 421 before any mathematics course numbered above 500.
- Probability: Math 309 or Math 431 or 531
- Math 431 is preferred over 309.
- Math 531 is advanced probability and may be taken only after Math 421 or Math 521.
- Statistics: Math 310
- Analysis: Math 521
Additional Courses to Consider
- More courses in computational mathematics listed above.
- Math 635
Also
- Consider combining this program with Statistics or a program in the College of Agriculture and Life Sciences.
- Compare this major program to requirements for Medical School.
Ecology
Forestry
Genetics
Structural Biology
Systems Biology
Engineering
Astronautics
Chemical Engineering
The following program details an option 2 package for students in the College of Engineering program in Chemical Engineering who are interested in pursuing a second major in mathematics.
Application Courses
- CBE 320, 326, 426, 470
- Note: All of these course are required in for the undergraduate program in chemical engineering.
Core Math Courses
- Linear Algebra: Math 340 or Math 341 or Math 375
- Differential Equations: Math 319 or Math 376
- Applied Analysis: Math 321 and Math 322
- Two courses above the 500 level. Suggested courses to choose from are more real analysis (Math 521 and 522), algebra (Math 541), complex analysis (Math 623), and computational mathematics (Math 513 and 514).
Additional Courses to Consider
- Probability: Math 309 or Math 431 or 531
- Math 431 is preferred over 309.
- Math 531 is advanced probability and may be taken only after Math 421 or Math 521.
- Stochastic Processes: Math 632