NTS/Abstracts Spring 2011: Difference between revisions
No edit summary |
No edit summary |
||
Line 65: | Line 65: | ||
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20" | {| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20" | ||
|- | |- | ||
| bgcolor="#DDDDDD" align="center"| Title: | | bgcolor="#DDDDDD" align="center"| Title: TBA | ||
|- | |- | ||
| bgcolor="#DDDDDD"| | | bgcolor="#DDDDDD"| | ||
Line 72: | Line 72: | ||
</center> | </center> | ||
<br> | |||
== TBA == | == TBA == | ||
Line 77: | Line 78: | ||
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20" | {| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20" | ||
|- | |- | ||
| bgcolor="#DDDDDD" align="center"| Title: | | bgcolor="#DDDDDD" align="center"| Title: TBA | ||
|- | |- | ||
| bgcolor="#DDDDDD"| | | bgcolor="#DDDDDD"| | ||
Line 84: | Line 85: | ||
</center> | </center> | ||
<br> | |||
== TBA == | == TBA == | ||
Line 89: | Line 91: | ||
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20" | {| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20" | ||
|- | |- | ||
| bgcolor="#DDDDDD" align="center"| Title: | | bgcolor="#DDDDDD" align="center"| Title: TBA | ||
|- | |- | ||
| bgcolor="#DDDDDD"| | | bgcolor="#DDDDDD"| | ||
Line 96: | Line 98: | ||
</center> | </center> | ||
<br> | |||
== TBA == | == TBA == | ||
Line 101: | Line 104: | ||
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20" | {| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20" | ||
|- | |- | ||
| bgcolor="#DDDDDD" align="center"| Title: | | bgcolor="#DDDDDD" align="center"| Title: TBA | ||
|- | |- | ||
| bgcolor="#DDDDDD"| | | bgcolor="#DDDDDD"| | ||
Line 108: | Line 111: | ||
</center> | </center> | ||
<br> | |||
== TBA == | == TBA == | ||
Line 113: | Line 117: | ||
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20" | {| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20" | ||
|- | |- | ||
| bgcolor="#DDDDDD" align="center"| Title: | | bgcolor="#DDDDDD" align="center"| Title: TBA | ||
|- | |- | ||
| bgcolor="#DDDDDD"| | | bgcolor="#DDDDDD"| | ||
Line 120: | Line 124: | ||
</center> | </center> | ||
<br> | |||
== TBA == | == TBA == | ||
Line 125: | Line 130: | ||
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20" | {| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20" | ||
|- | |- | ||
| bgcolor="#DDDDDD" align="center"| Title: | | bgcolor="#DDDDDD" align="center"| Title: TBA | ||
|- | |- | ||
| bgcolor="#DDDDDD"| | | bgcolor="#DDDDDD"| | ||
Line 132: | Line 137: | ||
</center> | </center> | ||
<br> | |||
== TBA == | == TBA == | ||
Line 137: | Line 143: | ||
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20" | {| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20" | ||
|- | |- | ||
| bgcolor="#DDDDDD" align="center"| Title: | | bgcolor="#DDDDDD" align="center"| Title: TBA | ||
|- | |- | ||
| bgcolor="#DDDDDD"| | | bgcolor="#DDDDDD"| | ||
Line 144: | Line 150: | ||
</center> | </center> | ||
<br> | |||
== TBA == | == TBA == | ||
Line 149: | Line 156: | ||
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20" | {| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20" | ||
|- | |- | ||
| bgcolor="#DDDDDD" align="center"| Title: | | bgcolor="#DDDDDD" align="center"| Title: TBA | ||
|- | |- | ||
| bgcolor="#DDDDDD"| | | bgcolor="#DDDDDD"| | ||
Line 156: | Line 163: | ||
</center> | </center> | ||
<br> | |||
== TBA == | == TBA == | ||
Line 161: | Line 169: | ||
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20" | {| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20" | ||
|- | |- | ||
| bgcolor="#DDDDDD" align="center"| Title: | | bgcolor="#DDDDDD" align="center"| Title: TBA | ||
|- | |- | ||
| bgcolor="#DDDDDD"| | | bgcolor="#DDDDDD"| | ||
Line 168: | Line 176: | ||
</center> | </center> | ||
<br> | |||
== TBA == | == TBA == | ||
Line 173: | Line 182: | ||
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20" | {| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20" | ||
|- | |- | ||
| bgcolor="#DDDDDD" align="center"| Title: | | bgcolor="#DDDDDD" align="center"| Title: TBA | ||
|- | |- | ||
| bgcolor="#DDDDDD"| | | bgcolor="#DDDDDD"| | ||
Line 179: | Line 188: | ||
|} | |} | ||
</center> | </center> | ||
<br> | <br> |
Revision as of 05:36, 18 January 2011
Anton Gershaschenko
Title: Moduli of Representations of Unipotent Groups |
Abstract: Representations of reductive groups are discretely parameterized, but unipotent groups can have non-trivial families of representations, so it makes sense try to construct and understand a moduli stack (or space) of representations of a given unipotent group. If you restrict to certain kinds of representations, it is possible to actually get your hands on the moduli stack and to construct a moduli space. I'll summarize the few things I know about the general case and then give you a tour of some interesting features that appear in small examples. |
Keerthi Madapusi
Title: A rationality property of Hodge cycles on abelian varieties, with an application to arithmetic compactifications of Shimura varieties |
Abstract: TBA |
Bei Zhang
Title: p-adic L-function of automorphic form of GL(2) |
Abstract: Modular symbol is used to construct p-adic L-functions associated to a modular form. In this talk, I will explain how to generalize this powerful tool to the construction of p-adic L-functions attached to an automorphic representation on GL_{2}(A) where A is the ring of adeles over a number field. This is a joint work with Matthew Emerton. |
David Brown
Title: Explicit modular approaches to generalized Fermat equations |
Abstract: TBA |
TBA
Title: TBA |
Abstract: TBA |
TBA
Title: TBA |
Abstract: TBA |
TBA
Title: TBA |
Abstract: TBA |
TBA
Title: TBA |
Abstract: TBA |
TBA
Title: TBA |
Abstract: TBA |
TBA
Title: TBA |
Abstract: TBA |
TBA
Title: TBA |
Abstract: TBA |
TBA
Title: TBA |
Abstract: TBA |
TBA
Title: TBA |
Abstract: TBA |
TBA
Title: TBA |
Abstract: TBA |
Organizer contact information
Return to the Number Theory Seminar Page
Return to the Algebra Group Page