Geometry and Topology Seminar 2019-2020: Difference between revisions
No edit summary |
|||
Line 1: | Line 1: | ||
== Spring 2011 == | == Spring 2011 == | ||
The seminar will be held in room | The seminar will be held in room 901 of Van Vleck Hall on Fridays from 1:20pm - 2:10pm | ||
{| cellpadding="8" | {| cellpadding="8" |
Revision as of 21:45, 20 January 2011
Spring 2011
The seminar will be held in room 901 of Van Vleck Hall on Fridays from 1:20pm - 2:10pm
date | speaker | title | host(s) |
---|---|---|---|
January 21 | Mohammed Abouzaid (Clay Institute & MIT) | Yong-Geun | |
March 4 | David Massey (Northeastern) |
Lê Numbers and the Topology of Non-isolated Hypersurface Singularities |
Maxim |
March 11 | Danny Calegari (Cal Tech)) | Yong-Geun | |
May 6 | Alex Suciu (Northeastern) | Maxim |
Abstracts
Mohammed Abouzaid (Clay Institute & MIT)
A plethora of exotic Stein manifolds
In real dimensions greater than 4, I will explain how a smooth manifold underlying an affine variety admits uncountably many distinct (Wein)stein structures, of which countably many have finite type, and which are distinguished by their symplectic cohomology groups. Starting with a Lefschetz fibration on such a variety, I shall per- form an explicit sequence of appropriate surgeries, keeping track of the changes to the Fukaya category and hence, by understanding open-closed maps, obtain descriptions of symplectic cohomology af- ter surgery. (joint work with P. Seidel)
David Massey (Northeastern)
Lê Numbers and the Topology of Non-isolated Hypersurface Singularities
The results of Milnor from his now-classic 1968 work "Singular Points of Complex Hypersurfaces" are particularly strong when the singular points are isolated. One of the most striking subsequent results in this area, was the 1976 result of Lê and Ramanujam, in which the h-Cobordism Theorem was used to prove that constant Milnor number implies constant topological-type, for families of isolated hypersurfaces.
In this talk, I will discuss the Lê cycles and Lê numbers of a singular hypersurface, and the results which seem to indicate that they are the "correct" generalization of the Milnor number for non-isolated hypersurface singularities.
Danny Calegari (Cal Tech)
TBA
Alex Suciu (Northeastern)
TBA