Matroids seminar: Difference between revisions
No edit summary |
No edit summary |
||
Line 12: | Line 12: | ||
{| cellpadding="8px" style="vertical-align:top; text-align:left; cellpadding:10px;" | {| cellpadding="8px" style="vertical-align:top; text-align:left; cellpadding:10px;" | ||
| | |3/8/2019 | ||
| | | | ||
<div style="font-weight:bold;"> | <div style="font-weight:bold;">Vladmir Sotirov</div> | ||
<div class="mw-collapsible mw-collapsed" data-expandtext="Show abstract" data-collapsetext="Hide abstract" style="width:450px; overflow:auto;"> | <div class="mw-collapsible mw-collapsed" data-expandtext="Show abstract" data-collapsetext="Hide abstract" style="width:450px; overflow:auto;"> | ||
<div><i> | <div><i>Infinite matroids</i></div> | ||
<div class="mw-collapsible-content"> | <div class="mw-collapsible-content"> | ||
TBA | |||
</div></div> | </div></div> | ||
|- | |- | ||
| | |3/1/2019 | ||
| | | | ||
<div style="font-weight:bold;">[https:// | <div style="font-weight:bold;">[https://math.berkeley.edu/~ceur/ Chris Eur]</div> | ||
<div class="mw-collapsible mw-collapsed" data-expandtext="Show abstract" data-collapsetext="Hide abstract" style="width:450px; overflow:auto;"> | <div class="mw-collapsible mw-collapsed" data-expandtext="Show abstract" data-collapsetext="Hide abstract" style="width:450px; overflow:auto;"> | ||
<div><i> | <div><i>The multivariate Tutte polynomial of a flag matroid</i></div> | ||
<div class="mw-collapsible-content"> | <div class="mw-collapsible-content"> | ||
We | Flag matroids are combinatorial objects whose relation to ordinary matroids are akin to that of flag varieties to Grassmannians. We define a multivariate Tutte polynomial of a flag matroid, and show that it is Lorentzian in the sense of [https://arxiv.org/abs/1902.03719 Branden-Huh '19]. As a consequence, we obtain a flag matroid generalization of Mason’s conjecture concerning the f-vector of independent subsets of a matroid. This is an on-going joint work with June Huh. | ||
</div></div> | </div></div> | ||
|- | |- | ||
|2/ | |2/22/2019 | ||
| | | | ||
<div style="font-weight:bold;">[ | <div style="font-weight:bold;">[https://www.math.wisc.edu/~wang/ Botong Wang]</div> | ||
<div class="mw-collapsible mw-collapsed" data-expandtext="Show abstract" data-collapsetext="Hide abstract" style="width:450px; overflow:auto;"> | <div class="mw-collapsible mw-collapsed" data-expandtext="Show abstract" data-collapsetext="Hide abstract" style="width:450px; overflow:auto;"> | ||
<div><i> | <div><i>The Kazhdan-Lusztig polynomial of a matroid</i></div> | ||
<div class="mw-collapsible-content"> | <div class="mw-collapsible-content"> | ||
We | Classically, Kazdhan-Lusztig polynomials are associated to intervals of the Bruhat poset of a Coxeter group. We will discuss an analogue of Kazdhan-Lusztig polynomials for matroids, including results and conjectures from [https://arxiv.org/pdf/1611.07474.pdf these] [https://arxiv.org/pdf/1412.7408.pdf two] papers. | ||
</div></div> | </div></div> | ||
|- | |- | ||
Line 48: | Line 48: | ||
</div></div> | </div></div> | ||
|- | |- | ||
|2/ | |2/8/2019 | ||
| | | | ||
<div style="font-weight:bold;">[ | <div style="font-weight:bold;">[http://www.math.wisc.edu/~csimpson6/ Connor Simpson]</div> | ||
<div class="mw-collapsible mw-collapsed" data-expandtext="Show abstract" data-collapsetext="Hide abstract" style="width:450px; overflow:auto;"> | <div class="mw-collapsible mw-collapsed" data-expandtext="Show abstract" data-collapsetext="Hide abstract" style="width:450px; overflow:auto;"> | ||
<div><i> | <div><i>Proving the Heron-Rota-Welsh conjecture</i></div> | ||
<div class="mw-collapsible-content"> | <div class="mw-collapsible-content"> | ||
We outline the proof of the Heron-Rota-Welsh conjecture given by Adiprasito, Huh, and Katz in their paper [https://arxiv.org/abs/1511.02888 Hodge theory for combinatorial geometries] | |||
</div></div> | </div></div> | ||
|- | |- | ||
| | |1/25/2019 & 2/1/2019 | ||
| | | | ||
<div style="font-weight:bold;">[https://math. | <div style="font-weight:bold;">[https://www.math.wisc.edu/~jose/ Jose Israel Rodriguez]</div> | ||
<div class="mw-collapsible mw-collapsed" data-expandtext="Show abstract" data-collapsetext="Hide abstract" style="width:450px; overflow:auto;"> | <div class="mw-collapsible mw-collapsed" data-expandtext="Show abstract" data-collapsetext="Hide abstract" style="width:450px; overflow:auto;"> | ||
<div><i> | <div><i>Algebraic matroids in action</i></div> | ||
<div class="mw-collapsible-content"> | <div class="mw-collapsible-content"> | ||
We discuss algebraic matroids and their applications; see [https://arxiv.org/abs/1809.00865 Algebraic Matroids in Action]. | |||
</div></div> | </div></div> | ||
|- | |- | ||
| | |1/18/2019 | ||
| | | | ||
<div style="font-weight:bold;"> | <div style="font-weight:bold;">[https://sites.google.com/site/dcorey2814/home Daniel Corey]</div> | ||
<div class="mw-collapsible mw-collapsed" data-expandtext="Show abstract" data-collapsetext="Hide abstract" style="width:450px; overflow:auto;"> | <div class="mw-collapsible mw-collapsed" data-expandtext="Show abstract" data-collapsetext="Hide abstract" style="width:450px; overflow:auto;"> | ||
<div><i> | <div><i>Introduction to matroids</i></div> | ||
<div class="mw-collapsible-content"> | <div class="mw-collapsible-content"> | ||
We'll cover the basic definitions and some examples, roughly following [http://web.ma.utexas.edu/users/sampayne/pdf/Math648Lecture3.pdf these notes]. | |||
</div></div> | </div></div> | ||
|- | |- | ||
|} | |} |
Revision as of 22:09, 4 March 2019
The matroids seminar & reading group meets 10:00--10:45 on Fridays in Van Vleck 901 in order to discuss matroids from a variety of viewpoints. In particular, we aim to
- survey open conjectures and recent work in the area
- compute many interesting examples
- discover concrete applications
We are happy to have new leaders of the discussion, and the wide range of topics to which matroids are related mean that each week is a great chance for a new participant to drop in! If you would like to talk but need ideas, see the Matroids seminar/ideas page.
To help develop an inclusive environment, a subset of the organizers will be available before the talk in the ninth floor lounge to informally discuss background material e.g., "What is a variety?", "What is a circuit?", "What is a greedy algorithm?" (this is especially for those coming from an outside area).
Organizers: Colin Crowley, Connor Simpson; Daniel Corey, Jose Israel Rodriguez
3/8/2019 |
Vladmir Sotirov
Infinite matroids
TBA |
3/1/2019 |
The multivariate Tutte polynomial of a flag matroid
Flag matroids are combinatorial objects whose relation to ordinary matroids are akin to that of flag varieties to Grassmannians. We define a multivariate Tutte polynomial of a flag matroid, and show that it is Lorentzian in the sense of Branden-Huh '19. As a consequence, we obtain a flag matroid generalization of Mason’s conjecture concerning the f-vector of independent subsets of a matroid. This is an on-going joint work with June Huh. |
2/22/2019 | |
2/15/2019 |
Colin Crowley
Matroid polytopes
We outline the original formulation of matroid polytopes as moment polytopes of subvarieties of the Grassmanian, following Combinatorial Geometries, Convex Polyhedra, and Schbert Cells. |
2/8/2019 |
Proving the Heron-Rota-Welsh conjecture
We outline the proof of the Heron-Rota-Welsh conjecture given by Adiprasito, Huh, and Katz in their paper Hodge theory for combinatorial geometries |
1/25/2019 & 2/1/2019 |
Algebraic matroids in action
We discuss algebraic matroids and their applications; see Algebraic Matroids in Action. |
1/18/2019 |
Introduction to matroids
We'll cover the basic definitions and some examples, roughly following these notes. |