NTS ABSTRACTFall2019: Difference between revisions

From UW-Math Wiki
Jump to navigation Jump to search
No edit summary
Line 2: Line 2:




== Jan 23 ==
== Sep 5 ==


<center>
<center>
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"
|-
|-
| bgcolor="#F0A0A0" align="center" style="font-size:125%" | '''Yunqing Tang '''
| bgcolor="#F0A0A0" align="center" style="font-size:125%" | '''Euclid'''
|-
|-
| bgcolor="#BCD2EE"  align="center" | Reductions of abelian surfaces over global function fields
| bgcolor="#BCD2EE"  align="center" | Infinitely many primes
|-
|-
| bgcolor="#BCD2EE"  | For a non-isotrivial ordinary abelian surface $A$ over a global function field, under mild assumptions, we prove that there are infinitely many places modulo which $A$ is geometrically isogenous to the product of two elliptic curves. This result can be viewed as a generalization of a theorem of Chai and Oort. This is joint work with Davesh Maulik and Ananth Shankar.
| bgcolor="#BCD2EE"  | We introduce the notion of a prime number, and show that there are infinitely many of those.


|}                                                                         
|}                                                                         

Revision as of 16:13, 16 July 2019

Return to [1]


Sep 5

Euclid
Infinitely many primes
We introduce the notion of a prime number, and show that there are infinitely many of those.