Spring 2024 Analysis Seminar: Difference between revisions
m (date change) |
No edit summary |
||
Line 68: | Line 68: | ||
|''Andrei Martinez-Finkelshtein'' | |''Andrei Martinez-Finkelshtein'' | ||
|''Baylor'' | |''Baylor'' | ||
| | |Zeros of polynomials and free probability | ||
|Sergey | |Sergey | ||
| | | | ||
Line 161: | Line 161: | ||
Abstract: In this talk, we discuss recent work on the Hausdorff and packing dimension of pinned distance sets in the plane. Given a point x in the plane , and a subset E , the pinned distance set of E with respect to x is the set of all distances between x and the points of E . An important open problem is understanding the Hausdorff, and packing, dimensions of pinned distance sets. We will discuss ongoing progress on this problem, and present improved lower bounds for both the Hausdorff and packing dimensions of pinned distance sets. We also discuss the computability-theoretic methods used to achieve these bounds. | Abstract: In this talk, we discuss recent work on the Hausdorff and packing dimension of pinned distance sets in the plane. Given a point x in the plane , and a subset E , the pinned distance set of E with respect to x is the set of all distances between x and the points of E . An important open problem is understanding the Hausdorff, and packing, dimensions of pinned distance sets. We will discuss ongoing progress on this problem, and present improved lower bounds for both the Hausdorff and packing dimensions of pinned distance sets. We also discuss the computability-theoretic methods used to achieve these bounds. | ||
===[[Andrei Martinez-Finkelshtein]]=== | |||
Title: Zeros of polynomials and free probability | |||
Abstract: I will discuss briefly the connections of some problems from the geometric theory of polynomials to notions from free probability, such as free convolution. More specifically, I will illustrate it with two examples: | |||
- real zeros of some hypergeometric polynomials, their monotonicity, interlacing, and asymptotics; | |||
- flow of zeros of polynomials under iterated differentiation. |
Revision as of 15:28, 29 January 2024
Organizer: Shaoming Guo
Email: shaomingguo (at) math (dot) wisc (dot) edu
Time: Wed 3:30--4:30
Room: B223
We can use B223 from 4:30 to 5:00 for discussions after talks.
All talks will be in-person unless otherwise specified.
In some cases the seminar may be scheduled at different time to accommodate speakers.
If you would like to subscribe to the Analysis seminar list, send a blank email to analysis+join (at) g-groups (dot) wisc (dot) edu
Date | Speaker | Institution | Title | Host | ||
1 | We, Jan. 24, 2024 | |||||
2 | We, Jan. 31 | Sunggeum Hong | Chosun University | The Hörmander multiplier theorem for n-linear operators and its applications | Andreas | |
3 | We, Feb. 7 | Donald Stull | University of Chicago | Dimensions of pinned distance sets in the plane | Betsy, Shaoming, and Jake F. | |
4 | We, Feb. 14 | |||||
Fr, Feb. 16 | Jack Lutz | Iowa State University | Shaoming | department colloquium, 4-5pm | ||
5 | We, Feb. 21 | Andrei Martinez-Finkelshtein | Baylor | Zeros of polynomials and free probability | Sergey | |
6 | We, Feb. 28 | Alex Rutar | University of St. Andrews | Andreas | ||
7 | We, Mar. 6 | Song-Ying Li | UC-Irvine | Xianghong | ||
8 | We, Mar. 13 | |||||
9 | We, Mar. 20 | |||||
10 | We, Mar. 27 | Spring recess | spring recess | spring recess | ||
11 | We, Apr. 3 | |||||
12 | We, Apr. 10 | Victor Bailey | University of Oklahoma | Betsy | ||
13 | We, Apr. 17 | Jianhui (Franky) Li | Northwestern University | Betsy | ||
14 | We, Apr. 24 | |||||
15 | We, May 1 |
Abstracts
Donald Stull
Title: Dimensions of pinned distance sets in the plane
Abstract: In this talk, we discuss recent work on the Hausdorff and packing dimension of pinned distance sets in the plane. Given a point x in the plane , and a subset E , the pinned distance set of E with respect to x is the set of all distances between x and the points of E . An important open problem is understanding the Hausdorff, and packing, dimensions of pinned distance sets. We will discuss ongoing progress on this problem, and present improved lower bounds for both the Hausdorff and packing dimensions of pinned distance sets. We also discuss the computability-theoretic methods used to achieve these bounds.
Andrei Martinez-Finkelshtein
Title: Zeros of polynomials and free probability
Abstract: I will discuss briefly the connections of some problems from the geometric theory of polynomials to notions from free probability, such as free convolution. More specifically, I will illustrate it with two examples: - real zeros of some hypergeometric polynomials, their monotonicity, interlacing, and asymptotics; - flow of zeros of polynomials under iterated differentiation.