NTS ABSTRACTFall2024: Difference between revisions

From UW-Math Wiki
Jump to navigation Jump to search
(Created page with "Back to the number theory seminar main webpage: [https://www.math.wisc.edu/wiki/index.php/NTS Main page] == Sept 5 == <center> {| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20" |- | bgcolor="#F0A0A0" align="center" style="font-size:125%" | '''Jiaqi Hou''' |- | bgcolor="#BCD2EE" align="center" | Restrictions of eigenfunctions on arithmetic hyperbolic 3-manifolds |- | bgcolor="#BCD2EE" | Let X be a compact arithmeti...")
 
Line 6: Line 6:
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"
|-
|-
| bgcolor="#F0A0A0" align="center" style="font-size:125%" |  '''Jiaqi Hou'''
| bgcolor="#F0A0A0" align="center" style="font-size:125%" |  ''''''
|-
|-
| bgcolor="#BCD2EE"  align="center" | Restrictions of eigenfunctions on arithmetic hyperbolic 3-manifolds
| bgcolor="#BCD2EE"  align="center" |  
|-
|-
| bgcolor="#BCD2EE"  |  
| bgcolor="#BCD2EE"  |  
Let X be a compact arithmetic hyperbolic 3-manifold and Y a hyperbolic surface in X. Let f be a Hecke-Maass form on X, which is a joint eigenfunction of the Laplacian and Hecke operators. In this talk, I will present a power saving bound for the period of f along Y over the local bound. I will also present a work in progress on the bound for the L^2 norm of f restricted to Y. Both of the results are based on the method of arithmetic amplification developed by Iwaniec and Sarnak.
 
 
|}                                                                       
</center>
 
<br>
 
== Sept 12 ==
 
<center>
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"
|-
| bgcolor="#F0A0A0" align="center" style="font-size:125%" |  ''''''
|-
| bgcolor="#BCD2EE"  align="center" |
|-
| bgcolor="#BCD2EE"  |
 


|}                                                                         
|}                                                                         

Revision as of 20:15, 25 August 2024

Back to the number theory seminar main webpage: Main page

Sept 5

'



Sept 12

'