Algebraic Geometry Seminar Spring 2013: Difference between revisions

From UW-Math Wiki
Jump to navigation Jump to search
No edit summary
No edit summary
Line 34: Line 34:
''Albanese varieties of cyclic covers of plane, abelian varieties of CM type and orbifold pencils''
''Albanese varieties of cyclic covers of plane, abelian varieties of CM type and orbifold pencils''


I'll descibe relation between Alexadner modules of plane algebraic curves and maps of their complements onto orbifolds. Key step is a description of Albanese variety of cyclic covers of the plane in terms of abelian varieties of CM type.
I'll describe the relation between Alexander modules of plane algebraic curves and maps of their complements onto orbifolds. A key step is a description of the Albanese variety of cyclic covers of the plane in terms of abelian varieties of CM type.

Revision as of 02:23, 18 January 2013

The seminar meets on Fridays at 2:25 pm in Van Vleck B215.

The schedule for the previous semester is here.

Spring 2013

date speaker title host(s)
January 25 Anatoly Libgober (UIC) Albanese varieties of cyclic covers of plane, abelian varieties of CM type and orbifold pencils Laurentiu
March 1 Alexander Polishchuk (University of Oregon) TBA Dima
March 15 Xue Hang (Columbia) TBA Tonghai

Abstract

Anatoly Libgober

Albanese varieties of cyclic covers of plane, abelian varieties of CM type and orbifold pencils

I'll describe the relation between Alexander modules of plane algebraic curves and maps of their complements onto orbifolds. A key step is a description of the Albanese variety of cyclic covers of the plane in terms of abelian varieties of CM type.