Graduate Student Singularity Theory: Difference between revisions
No edit summary |
No edit summary |
||
Line 7: | Line 7: | ||
We are learning Hodge Theory this semester and will be following two books: | We are learning Hodge Theory this semester and will be following two books: | ||
1. Voisin, Hodge Theory and Complex Algebraic Geometry I & II | |- | ||
2. Peters, Steenbrink, Mixed Hodge Structures | |-1. Voisin, Hodge Theory and Complex Algebraic Geometry I & II | ||
|-2. Peters, Steenbrink, Mixed Hodge Structures | |||
== Spring 2013 == | == Spring 2013 == |
Revision as of 18:39, 29 August 2013
It is a weekly seminar by graduate students. Anyone is welcome. If you would like to present a topic, please contact Tommy Wong. Most of the seminars are at Wednesdays 3:00pm in room 901. Please check below for unusual time and location.
Fall 2013
We are learning Hodge Theory this semester and will be following two books: |- |-1. Voisin, Hodge Theory and Complex Algebraic Geometry I & II |-2. Peters, Steenbrink, Mixed Hodge Structures
Spring 2013
date | speaker | title |
---|---|---|
Feb. 6 (Wed) | Jeff Poskin | Toric Varieties III |
Feb.13 (Wed) | Yongqiang Liu | Intersection Alexander Module |
Feb.20 (Wed) | Yun Su (Suky) | How do singularities change shape and view of objects? |
Feb.27 (Wed) | KaiHo Wong | Fundamental groups of plane curves complements |
Mar.20 (Wed) | Jörg Schürmann (University of Münster, Germany) | Characteristic classes of singular toric varieties |
Apr. 3 (Wed) | KaiHo Wong | Fundamental groups of plane curves complements II |
Apr.10 (Wed) | Yongqiang Liu | Milnor fiber of local function germ |
Apr.17 (Wed) 2:45pm-3:45pm (Note the different time) | KaiHo Wong | Formula of Alexander polynomials of plane curves |
Abstracts
Wed, 2/27: Tommy
Fundamental groups of plane curves complements
I will sketch the proof of the Zariski-Van Kampen thereon and say some general results about the fundamental groups of plane curves complements. In particular, we will investigate, under what conditions, these groups are abelian. Some simple examples will be provided. And if time permits, some classical examples of Zariski and Oka will be computed.
Fall 2012
date | speaker | title |
---|---|---|
Sept. 18 (Tue) | KaiHo Wong | Organization and Milnor fibration and Milnor Fiber |
Sept. 25 (Tue) | KaiHo Wong | Algebraic links and exotic spheres |
Oct. 4 (Thu) | Yun Su (Suky) | Alexander polynomial of complex algebraic curve (Note the different day but same time and location) |
Oct. 11 (Thu) | Yongqiang Liu | Sheaves and Hypercohomology |
Oct. 18 (Thu) | Jeff Poskin | Toric Varieties II |
Nov. 1 (Thu) | Yongqiang Liu | Mixed Hodge Structure |
Nov. 15 (Thu) | KaiHo Wong | Euler characteristics of hypersurfaces with isolated singularities |
Nov. 29 (Thu) | Markus Banagl, University of Heidelberg | High-Dimensional Topological Field Theory, Automata Theory, and Exotic spheres |
Abstracts
Thu, 10/4: Suky
Alexander polynomial of complex algebraic curve
I will extend the definition of Alexander polynomial in knot theory to an complex algebraic curve. From the definition, it is clear that Alexander polynomial is an topological invariant for curves. I will explain how the topology of a curve control its Alexander polynomial, in terms of the factors. Calculations of some examples will be provided.