NTS/Abstracts/Fall2010: Difference between revisions
No edit summary |
No edit summary |
||
Line 110: | Line 110: | ||
sums whose equidistribution laws are controlled by exceptional groups | sums whose equidistribution laws are controlled by exceptional groups | ||
E_7,E_8,F_4 and G_2. | E_7,E_8,F_4 and G_2. | ||
|} | |||
</center> | |||
<br> | |||
== Bryden Cais, UW Madison == | |||
<center> | |||
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20" | |||
|- | |||
| bgcolor="#DDDDDD" align="center"| Title | |||
|- | |||
| bgcolor="#DDDDDD"| | |||
Abstract. | |||
|} | |||
</center> | |||
<br> | |||
== David Brown, UW Madison == | |||
<center> | |||
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20" | |||
|- | |||
| bgcolor="#DDDDDD" align="center"| Title | |||
|- | |||
| bgcolor="#DDDDDD"| | |||
Abstract. | |||
|} | |||
</center> | |||
<br> | |||
== Jay Pottharst, Boston University == | |||
<center> | |||
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20" | |||
|- | |||
| bgcolor="#DDDDDD" align="center"| Title: Iwasawa theory at nonordinary primes | |||
|- | |||
| bgcolor="#DDDDDD"| | |||
Abstract. | |||
|} | |||
</center> | |||
<br> | |||
== Alex Paulin, Berkeley == | |||
<center> | |||
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20" | |||
|- | |||
| bgcolor="#DDDDDD" align="center"| Title | |||
|- | |||
| bgcolor="#DDDDDD"| | |||
Abstract. | |||
|} | |} | ||
</center> | </center> | ||
Line 133: | Line 191: | ||
== | == David Geraghty, Princeton and IAS == | ||
<center> | <center> | ||
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20" | {| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20" | ||
|- | |- | ||
| bgcolor="#DDDDDD" align="center"| Title | | bgcolor="#DDDDDD" align="center"| Title | ||
|- | |- | ||
| bgcolor="#DDDDDD"| | | bgcolor="#DDDDDD"| |
Revision as of 10:57, 7 September 2010
Jordan Ellenberg, UW Madison
Title: Expander graphs, gonality, and Galois representations |
Abstract: TBA |
Shuichiro Takeda, Purdue
Title: On the regularized Siegel-Weil formula for the second terms and
non-vanishing of theta lifts from orthogonal groups |
Abstract: In this talk, we will discuss (a certain form of) the Siegel-Weil formula for the second terms (the weak second term identity). If time permits, we will give an application of the Siegel-Weil formula to non-vanishing problems of theta lifts. (This is a joint with W. Gan.) |
Xinyi Yuan
Title |
Abstract. |
Jared Weinstein, IAS
Title: Semistable reduction of modular curves |
Abstract. |
David Zywna, U Penn
Title |
Abstract. |
Soroosh Yazdani, UBC and SFU
Title |
Abstract. |
Zhiwei Yun, MIT
Title: From automorphic forms to Kloosterman sheaves (joint work with J.Heinloth and B-C.Ngo) |
Abstract: Classical Kloosterman sheaves are rank n local systems on the punctured line (over a finite field) which incarnate Kloosterman sums in a geometric way. The arithmetic properties of the Kloosterman sums (such as estimate of absolute values and distribution of angles) can be deduced from geometric properties of these sheaves. In this talk, we will construct generalized Kloosterman local systems with an arbitrary reductive structure group using the geometric Langlands correspondence. They provide new examples of exponential sums with nice arithmetic properties. In particular, we will see exponential sums whose equidistribution laws are controlled by exceptional groups E_7,E_8,F_4 and G_2. |
Bryden Cais, UW Madison
Title |
Abstract. |
David Brown, UW Madison
Title |
Abstract. |
Jay Pottharst, Boston University
Title: Iwasawa theory at nonordinary primes |
Abstract. |
Alex Paulin, Berkeley
Title |
Abstract. |
Samit Dasgupta, UC Santa Cruz
Title |
Abstract. |
David Geraghty, Princeton and IAS
Title |
Abstract. |
Toby Gee, Northwestern
Title |
Abstract. |
Organizer contact information
Return to the Number Theory Seminar Page
Return to the Algebra Group Page