Algebraic Geometry Seminar Fall 2014: Difference between revisions

From UW-Math Wiki
Jump to navigation Jump to search
Line 41: Line 41:
|Daniel
|Daniel
|-
|-
 
|October 31
|[http://homepages.math.uic.edu/~libgober/ Anatoly Libgober] (UIC)
|TBA
|Max
|-
|November 21
|November 21
|[http://www.math.umass.edu/~markman/ Eyal Markman] (UMass Amherst)
|[http://www.math.umass.edu/~markman/ Eyal Markman] (UMass Amherst)

Revision as of 15:28, 7 October 2014

The seminar meets on Fridays at 2:25 pm in Van Vleck B131.

The schedule for the previous semester is here.

Algebraic Geometry Mailing List

  • Please join the Algebraic Geometry Mailing list to hear about upcoming seminars, lunches, and other algebraic geometry events in the department (it is possible you must be on a math department computer to use this link).

Fall 2014 Schedule

date speaker title host(s)
September 12 Andrei Caldararu (UW) Geometric and algebraic significance of the Bridgeland differential (local)
September 19 Greg G. Smith (Queen's University) Toric vector bundles (Daniel)
October 3 Daniel Erman (UW) Tate resolutions for products of projective spaces (local)
October 10 Lars Winther Christensen (Texas Tech University) Beyond Tate (co)homology Daniel
October 17 Claudiu Raicu (Notre Dame University) TBA Daniel
October 31 Anatoly Libgober (UIC) TBA Max
November 21 Eyal Markman (UMass Amherst) TBA Andrei
December 5 DJ Bruce (UW) TBA local

Abstracts

Andrei Caldararu

Several years ago Tom Bridgeland suggested that there should exist interesting chain maps C_*(M_{g,n}) -> C_{*+2}(M_{g,n+1}) and he conjectured some applications of these maps to mirror symmetry. I shall present a precise definition of these maps using techniques from the theory of ribbon graphs, and discuss a recent result (joint with Dima Arinkin) about the homology of the total complex associated to the bicomplex obtained from these maps. Then I shall speculate (wildly) about applications to mirror symmetry.

Eyal Markman

TBA

Lars W Christensen

Tate (co)homology was originally defined for modules over group algebras. The cohomological theory has a very satisfactory generalization---Tate--Vogel cohomology or stable cohomology---to the setting of associative rings. The properties of the corresponding generalization of the homological theory are, perhaps, less straightforward and have, in any event, been poorly understood. I will report on recent progress in this direction. The talk is based on joint work with Olgur Celikbas, Li Liang, and Grep Piepmeyer.