Colloquia 2012-2013
Mathematics Colloquium
All colloquia are on Fridays at 4:00 pm in Van Vleck B239, unless otherwise indicated.
Spring 2011
date | speaker | title | host(s) |
---|---|---|---|
jan 21 | Emanuele Macri (University of Bonn) | Stability conditions and Bogomolov-type inequalities in higher dimension | Andrei Caldararu |
jan 28 | Marcus Roper (Berkeley) | TBA | Paul Milewski |
feb 4 | Xinyi Yuan (Columbia University) | TBA | Tonghai |
feb 25 | Omri Sarig (Penn State) | TBA | Shamgar |
mar 4 | Jeff Weiss (Colorado) | TBA | Jean-Luc |
mar 11 | Roger Howe (Yale) | TBA | Shamgar |
mar 25 | Pham Huu Tiep (Arizona) | TBA | Martin Isaacs |
apr 1 | Amy Ellis (Madison) | TBA | Steffen |
apr 8 | Alan Weinstein (Berkeley) | TBA | Yong-Geun |
apr 15 | Max Gunzburger (Florida State) | TBA | James Rossm. |
apr 22 | Jane Hawkins (U. North Carolina) | TBA | WIMAW (Diane Holcomb) |
apr 29 | Jaroslaw Wlodarczyk (Purdue) | TBA | Laurentiu |
Abstracts
Emanuele Macri (University of Bonn)
Stability conditions and Bogomolov-type inequalities in higher dimension
Stability conditions on a derived category were originally introduced by Bridgeland to give a mathematical foundation for the notion of \Pi-stability in string theory, in particular in Douglas’ work. Recently, the theory has been further developed by Kontsevich and Soibelman, in relation to their theory of motivic Donaldson-Thomas invariants for Calabi-Yau categories. However, no example of stability condition on a projective Calabi-Yau threefold has yet been constructed.
In this talk, we will present an approach to the construction of stability conditions on the derived category of any smooth projective threefold. The main ingredient is a generalization to complexes of the classical Bogomolov-Gieseker inequality for stable sheaves. We will also discuss geometric applications of this result.
This is based on joint work with A. Bayer, A. Bertram, and Y. Toda.