NTS ABSTRACTSpring2024
Back to the number theory seminar main webpage: Main page
Jan 25
Jason Kountouridis |
The monodromy of simple surface singularities in mixed characteristic |
Given a smooth proper surface X over a $p$-adic field, it is a generally open problem in arithmetic geometry to relate the mod $p$ reduction of X with the monodromy action of inertia on the $\ell$-adic cohomology of X, the latter viewed as a Galois representation ($\ell \neq p$). In this talk, I will focus on the case of X degenerating to a surface with simple singularities, also known as rational double points. This class of singularities is linked to simple simply-laced Lie algebras, and in turn this allows for a concrete description of the associated local monodromy. Along the way we will see how Springer theory enters the picture, and we will discuss a mixed-characteristic version of some classical results of Artin, Brieskorn and Slodowy on simultaneous resolutions. |