Fall 2024 Analysis Seminar

From UW-Math Wiki
Revision as of 16:22, 11 October 2024 by Aseeger (talk | contribs)
Jump to navigation Jump to search

Organizers: Shengwen Gan, Terry Harris and Andreas Seeger

Emails:

  • Shengwen Gan: sgan7 at math dot wisc dot edu
  • Terry Harris: tlharris4 at math dot wisc dot edu
  • Andreas Seeger: seeger at math dot wisc dot edu

Time and Room: Wed 3:30--4:30 Van Vleck B119.

In some cases the seminar may be scheduled at different time to accommodate speakers.

If you would like to subscribe to the Analysis seminar list, send a blank email to analysis+subscribe (at) g-groups (dot) wisc (dot) edu

Links to previous seminars

Link to Spring 2025 Analysis Seminar


Date Speaker Institution Title Host(s) Notes (e.g. unusual room/day/time)
We, 9-11 Gevorg Mnatsakanyan UW Madison Almost everywhere convergence of the Malmquist Takenaka series
We, 9-18 Lars Niedorf UW Madison Restriction type estimates and spectral multipliers on Métivier groups
Th, 9-26, 2:25-3:25, VV B215 Niclas Technau University of Bonn Rational points on/near homogeneous hyper-surfaces Andreas Note changes of time/date/room, joint with Number Theory Seminar
We, 10-2 Sergey Denisov UW Madison Applications of inverse spectral theory for canonical systems to NLS.
We, 10-9 Shukun Wu Indiana University On almost everywhere convergence of planar Bochner Riesz means Shengwen
We, 10-16 Nathan Wagner Brown University Dyadic shifts, sparse domination, and commutators in the non-doubling setting Andreas
We, 10-23 Betsy Stovall UW Madison
We, 10-30 Burak Hatinoglu Michigan State University Alexei
We, 11-6 Bingyuan Liu University of Texas Rio Grande Valley Xianghong
We, 11-13 Maxim Yattselev Indiana University (Indianapolis) Sergey
We, 11-20 Li Ji Macquarie University Brian
We, 11-27, no seminar
We, 12-4 Dallas Albritton UW Madison Andreas
We, 12-11


Abstracts

Gevorg Mnatsakanyan

Title: Almost everywhere convergence of the Malmquist Takenaka series

Link to Abstract: [1]

Lars Niedorf

Title: Restriction type estimates and spectral multipliers on Métivier groups

Abstract: We present a restriction type estimate for sub-Laplacians on arbitrary two-step stratified Lie groups. Although weaker than previously known estimates for the subclass of Heisenberg type groups, these estimates turn out to be sufficient to prove an Lp-spectral multiplier theorem with sharp regularity condition s > d|1/p-1/2| for sub-Laplacians on Métivier groups.

Niclas Technau

Title: Rational points on/near homogeneous hyper-surfaces

Abstract: How many rational points are on/near a compact hyper-surface? This question is related to Serre's Dimension Growth Conjecture. We survey the state of the art, and explain a standard random model. Furthermore, we report on recent joint work with Rajula Srivastava (Uni/MPIM Bonn). Our arguments are rooted in Fourier analysis and, in particular, clarify the role of curvature in the random model.

Sergey Denisov

Title: Applications of inverse spectral theory for canonical systems to NLS

Abstract: For nice initial data, NLS can be integrated using the inverse scattering theory for the Dirac equation on the line. We will discuss the connection of the Dirac equation to canonical systems and use the recent characterization of the Szegő class of measures on the real line to obtain a new semi-conserved quantity for the NLS. The bounds for the negative Sobolev norms will be presented as an application for the L2 NLS solutions (based on joint work with Roman Bessonov).

Shukun Wu

Title: On almost everywhere convergence of planar Bochner Riesz means

Abstract: We prove that the planar Bochner Riesz mean converges almost everywhere for any L^p function in the optimal range, for 5/3<p<2. Our approach is based on a weighted L^2 estimate, which may be of independent interest. For example, up to an epsilon loss, we can reprove Cordoba's L^4 orthogonality by solely considering L^2 space and using L^2 orthogonality. This is a joint work with Xiaochun Li.

Nathan Wagner

Title: Dyadic shifts, sparse domination, and commutators in the non-doubling setting

Abstract: In this talk, we will discuss a dyadic variant of the Hilbert transform, which is a useful model of its continuous counterpart and the prototypical example of a so-called "Haar shift". After discussing some background and motivation in the Lebesgue measure case, we will turn to the situation where the L2 Haar functions are defined with respect to a locally finite Borel measure μ, which may not satisfy the dyadic doubling condition. In this more general setting, Lopez-Sanchez, Martell, and Parcet identified a weak regularity condition on the measure μ which characterizes weak-type and Lp estimates for this dyadic Hilbert transform. I then will discuss joint work with Jose Conde Alonso and Jill Pipher, where we obtain a domination of the dyadic Hilbert transform (and more generally, Haar shifts) by a modified sparse form. As an application, we characterize the class of weights where the dyadic Hilbert transform and related operators are bounded. A surprising novelty is that the usual (dyadic) Muckenhoupt A2 condition is necessary, but no longer sufficient in the non-doubling setting, and our modified weight condition reflects the "complexity" of the underlying Haar shift. Finally, we will examine a different dyadic Haar shift model of the Hilbert transform and its relationship to BMO (bounded mean oscillation) functions via commutators in the non-doubling setting (joint with Tainara Borges, Jose Conde Alonso, and Jill Pipher).