Graduate Student Singularity Theory

From UW-Math Wiki
Revision as of 11:33, 23 September 2013 by Wong (talk | contribs)
Jump to navigation Jump to search

It is a weekly seminar by graduate students. Anyone is welcome. If you would like to present a topic, please contact Tommy Wong. Please check below for unusual time and location.


Fall 2013

We are learning Hodge Theory this semester and will be following three books:

1. Voisin, Hodge Theory and Complex Algebraic Geometry I & II

2. Peters, Steenbrink, Mixed Hodge Structures

We meet weekly on Wednesdays from 12 at noon to 1pm in room 901.

date speaker title
Sep. 18 (Wed) KaiHo Wong
Sep. 25 (Wed) Yongqiang Liu Milnor Fibration at infinity of polynomial map

Spring 2013

date speaker title
Feb. 6 (Wed) Jeff Poskin Toric Varieties III
Feb.13 (Wed) Yongqiang Liu Intersection Alexander Module
Feb.20 (Wed) Yun Su (Suky) How do singularities change shape and view of objects?
Feb.27 (Wed) KaiHo Wong Fundamental groups of plane curves complements
Mar.20 (Wed) Jörg Schürmann (University of Münster, Germany) Characteristic classes of singular toric varieties
Apr. 3 (Wed) KaiHo Wong Fundamental groups of plane curves complements II
Apr.10 (Wed) Yongqiang Liu Milnor fiber of local function germ
Apr.17 (Wed) 2:45pm-3:45pm (Note the different time) KaiHo Wong Formula of Alexander polynomials of plane curves

Abstracts

Wed, 2/27: Tommy

Fundamental groups of plane curves complements

I will sketch the proof of the Zariski-Van Kampen thereon and say some general results about the fundamental groups of plane curves complements. In particular, we will investigate, under what conditions, these groups are abelian. Some simple examples will be provided. And if time permits, some classical examples of Zariski and Oka will be computed.



Fall 2012

date speaker title
Sept. 18 (Tue) KaiHo Wong Organization and Milnor fibration and Milnor Fiber
Sept. 25 (Tue) KaiHo Wong Algebraic links and exotic spheres
Oct. 4 (Thu) Yun Su (Suky) Alexander polynomial of complex algebraic curve (Note the different day but same time and location)
Oct. 11 (Thu) Yongqiang Liu Sheaves and Hypercohomology
Oct. 18 (Thu) Jeff Poskin Toric Varieties II
Nov. 1 (Thu) Yongqiang Liu Mixed Hodge Structure
Nov. 15 (Thu) KaiHo Wong Euler characteristics of hypersurfaces with isolated singularities
Nov. 29 (Thu) Markus Banagl, University of Heidelberg High-Dimensional Topological Field Theory, Automata Theory, and Exotic spheres

Abstracts

Thu, 10/4: Suky

Alexander polynomial of complex algebraic curve

I will extend the definition of Alexander polynomial in knot theory to an complex algebraic curve. From the definition, it is clear that Alexander polynomial is an topological invariant for curves. I will explain how the topology of a curve control its Alexander polynomial, in terms of the factors. Calculations of some examples will be provided.