Applied Algebra Seminar Spring 2021

From UW-Math Wiki
Jump to navigation Jump to search

When: 1:30pm, Thursdays

Where: Virtual

List: mathaas@lists.wisc.edu, to join email join-mathaas@lists.wisc.edu

Contact: Shamgar Gurevich, Jose Israel Rodriguez, Julia Lindberg (Lead)

Remark: This seminar is held on the fourth Thursday of the month


Spring 2021 Schedule

February 25: TBD

March 26: James Saunderson (Monash University)

Title: TBD

April 22: TBD

Spring 2020 Schedule

date speaker title host(s)
February 20 Carla Michini (UW Madison) Short simplex paths in lattice polytopes Local
March 5 Alisha Zachariah (UW Madison) Efficient Estimation of a Sparse Delay-Doopler Channel Local
March 19 Spring Break
March 26 (Seminar on Hiatus because of Covid-19)

Abstracts

Carla Michini

Short simplex paths in lattice polytopes

We consider the problem of optimizing a linear function over a lattice polytope P contained in [0,k]^n and defined via m linear inequalities. We design a simplex algorithm that, given an initial vertex, reaches an optimal vertex by tracing a path along the edges of P of length at most O(n^6 k log k). The length of this path is independent on m and is the best possible up to a polynomial function, since it is only polynomially far from the worst case diameter. The number of arithmetic operations needed to compute the next vertex in the path is polynomial in n, m and log k. If k is polynomially bounded by n and m, the algorithm runs in strongly polynomial time. This is a joint work with Alberto Del Pia.


Alisha Zachariah

Efficiently Estimating a Sparse Delay-Doppler Channel

Multiple wireless sensing tasks, e.g., radar detection for driver safety, involve estimating the ”channel” or relationship between signal transmitted and received. In this talk, I will focus on a certain type of channel known as the delay-doppler channel. This channel model starts to be applicable in high frequency carrier settings, which are increasingly common with recent developments in mmWave technology. Moreover, in this setting, both the channel model and existing technologies are amenable to working with signals of large bandwidth, and using such signals is a standard approach to achieving high resolution channel estimation. However, when high resolution is desirable, this approach creates a tension with the desire for efficiency because, in particular, it immediately implies that the signals in play live in a space of very high dimension N (e.g., ~10^6 in some applications), as per the Shannon-Nyquist sampling theorem.

To address this, I will propose a randomized algorithm for channel estimation in the k-sparse setting (e.g., k objects in radar detection), with sampling and space complexity both on the order of k(log N)^2, and arithmetic complexity on the order of k(log N)^3+k^2, for N sufficiently large.

While this algorithm seems to be extremely efficient -- to the best of our knowledge, the first of this nature in terms of complexity -- it is just a simple combination of three ingredients, two of which are well-known and widely used, namely digital chirp signals and discrete Gaussian filter functions, and the third being recent developments in Sparse Fast Fourier Transform algorithms.


Other events to note

date event/title speaker
February 7, 2020 Talk: Inverse Problems, Imaging and Tensor Decomposition Joe Kileel (Princeton)
February 10. 2020 Talk: Matroids, log-concavity, and expanders Cynthia Vinzant (NCSU)
April 17, 2020 /// Applied Algebra Days 4 - Tensors Several talks on tensors (Postponed)