Fall 2022 analysis seminar
The 2022-2023 Analysis Seminar will be organized by Shaoming Guo. The regular time and place for the Seminar will be Tuesdays at 4:00 p.m. in Van Vleck B139 (in some cases the seminar may be scheduled at different time to accommodate speakers). If you would like to subscribe to the Analysis seminar list, send a blank email to analysis+join (at) g-groups (dot) wisc (dot) edu. If you are from an institution different than UW-Madison, please send as well as an additional email to Shaoming. If you'd like to suggest speakers for the spring semester please contact Shaoming.
All talks will be in-person unless otherwise specified.
Analysis Seminar Schedule
date | speaker | institution | title | host(s) |
---|---|---|---|---|
08.23 | Gustavo Garrigós | University of Murcia | Approximation by N-term trigonometric polynomials and greedy algorithms | Andreas Seeger |
08.30 | Simon Myerson | Warwick | Forms of the Circle Method | Shaoming Guo |
09.13
(first week of semester) |
Zane Li | UW Madison | A decoupling interpretation of an old argument for Vinogradov's Mean Value Theorem | Analysis group |
09.16
(Friday, 1:20-2:10, Room B139) |
Affine restriction estimates for surfaces in R^3 via decoupling | UW Madison | Analysis group | |
09.20 (Joint with PDE and Geometric Analysis seminar) | Andrej Zlatoš | UCSD | Homogenization in front propagation models | Hung Tran |
09.23 Friday, Colloquium | Pablo Shmerkin | UBC | Incidences and line counting: from the discrete to the fractal setting | |
09.23-09.25 | RTG workshop in Harmonic Analysis | Shaoming Guo and Andreas Seeger | ||
09.27
(online, special time, 3-4pm) |
Michael Magee | Durham | Title | Simon Marshall |
10.04 | Philip Gressman | UPenn | Title | Shaoming Guo |
10.11 | Detlef Müller | CAU Kiel | Title | Betsy Stovall and Andreas Seeger |
10.14 (1:00 PM Friday. Joint with Geometry & Topology Seminar) | Min Ru | U of Houston | The K-stability and Nevanlinna/Diophantine theory | Xianghong Gong |
10.18 | Madelyne M. Brown | UNC | Fourier coefficients of restricted eigenfunctions | Betsy Stovall |
10.24 (Monday, B135) | Milivoje Lukic | Rice | Title | Sergey Denisov |
11.01 | Ziming Shi | Rutgers | Title | Xianghong Gong |
11.08 | Robert Fraser | Wichita State University | Title | Andreas Seeger |
11.15 | Brian Cook | Virginia Tech | Title | Brian Street |
11.22 | Thanksgiving | |||
11.29 | (tent reserved) | Title | Betsy Stovall | |
12.06 | Shengwen Gan | MIT | Title | Shaoming Guo and Andreas Seeger |
12.13 | Óscar Domínguez | Universidad Complutense Madrid and University of Lyons | Title | Andreas Seeger and Brian Street |
Abstracts
Gustavo Garrigós
Title: Approximation by N-term trigonometric polynomials and greedy algorithms
Link to Abstract: [1]
Simon Myerson
Title: Forms of the circle method
Abstract: The circle method is an analytic proof strategy, typically used in number theory when one wants to estimate the number of integer lattice points in some interesting set. Traditionally the first step is to evaluate the innocent integral $ \int_0^1 e^{2 \pi i t n} dt $ to give 1 if $ n = 0 $ and 0 if $ n $ is any other integer. Since Heath-Brown’s delta-method in the 90s this simplest step has been embellished with carefully constructed partitions of unity. In this informal discussion I will interpret these as different versions of the circle method and suggest how to understand their relative advantages.
Andrej Zlatos
Title: Homogenization in front propagation models
Abstract: Homogenization is a general principle that the dynamics of physical processes occurring in periodic or random environments often become effectively homogeneous in the long-time-large-scale limit. I will presents results showing that homogenization occurs for reaction-diffusion equations with both time-periodic-spatially-random and space-time-random KPP reactions and coefficients. These results rely on two crucial new tools: virtual linearity of KPP reaction-diffusion dynamics and a non-autonomous versions of Kingman’s subadditive ergodic theorem.
Zane Li
Title: A decoupling interpretation of an old argument for Vinogradov's Mean Value Theorem
Abstract: There are two proofs of Vinogradov's Mean Value Theorem (VMVT), the harmonic analysis decoupling proof by Bourgain, Demeter, and Guth from 2015 and the number theoretic efficient congruencing proof by Wooley from 2017. While there has been recent work illustrating the relation between these two methods, VMVT has been around since 1935. It is then natural to ask: What does old partial progress on VMVT look like in harmonic analysis language? How similar or different does it look from current decoupling proofs? We talk about a refinement of a 1973 argument of Karatsuba that showed partial progress towards VMVT and interpret this in decoupling language. This yields an argument that only uses rather simple geometry of the moment curve. This is joint work with Brian Cook, Kevin Hughes, Olivier Robert, Akshat Mudgal, and Po-Lam Yung.
Pablo Shmerkin
Title: Incidences and line counting: from the discrete to the fractal setting
Abstract: How many lines are spanned by a set of planar points?. If the points are collinear, then the answer is clearly "one". If they are not collinear, however, several different answers exist when sets are finite and "how many" is measured by cardinality. I will discuss a bit of the history of this problem and present a recent extension to the continuum setting, obtained in collaboration with T. Orponen and H. Wang. No specialized background will be assumed.
Madelyne M. Brown
Title: Fourier coefficients of restricted eigenfunctions
Abstract: We will discuss the growth of Laplace eigenfunctions on a compact manifold when restricted to a submanifold. We analyze the behavior of the restricted eigenfunctions by studying their Fourier coefficients with respect to an arbitrary orthonormal basis for the submanifold. We give an explicit bound on these coefficients depending on how the defect measures for the two collections of functions, the eigenfunctions and the basis, relate.
Min Ru
Title: The K-stability and Nevanlinna/Diophantine theory
Abstract: In the recent paper with P. Vojta, we introduced the so-called beta-constant, and used it to extend the Cartan's Second Main Theorem in Nevanlinna theory and Schmidt's subspace theorem in Diophantine approximation. It turns out the beta-constant is also used in the algebro-geometric stability criterion in the Fano's case. In this talk, I'll describe and explore the somewhat mysterious connection. The talk is based on the recent joint paper with Yan He entitled "The stability threshold and Diophantine approximation", Proc. AMS, 2022.
Name
Title
Abstract