Algebraic Geometry Seminar Fall 2014
The seminar meets on Fridays at 2:25 pm in Van Vleck B131.
The schedule for the previous semester is here.
Algebraic Geometry Mailing List
- Please join the Algebraic Geometry Mailing list to hear about upcoming seminars, lunches, and other algebraic geometry events in the department (it is possible you must be on a math department computer to use this link).
Fall 2014 Schedule
date | speaker | title | host(s) |
---|---|---|---|
September 12 | Andrei Caldararu (UW) | Geometric and algebraic significance of the Bridgeland differential | (local) |
September 19 | Greg G. Smith (Queen's University) | Toric vector bundles | (Daniel) |
October 3 | Daniel Erman (UW) | Tate resolutions for products of projective spaces | (local) |
October 10 | Lars Winther Christensen (Texas Tech University) | Beyond Tate (co)homology | Daniel |
October 17 | Claudiu Raicu (Notre Dame University) | TBA | Daniel |
October 31 | Anatoly Libgober (UIC) | TBA | Max |
November 7 | Vlad Matei (UW) | Moments of arithmetic functions in short intervals | Local |
November 21 | Eyal Markman (UMass Amherst) | TBA | Andrei |
December 5 | DJ Bruce (UW) | TBA | local |
Abstracts
Andrei Caldararu
Several years ago Tom Bridgeland suggested that there should exist interesting chain maps C_*(M_{g,n}) -> C_{*+2}(M_{g,n+1}) and he conjectured some applications of these maps to mirror symmetry. I shall present a precise definition of these maps using techniques from the theory of ribbon graphs, and discuss a recent result (joint with Dima Arinkin) about the homology of the total complex associated to the bicomplex obtained from these maps. Then I shall speculate (wildly) about applications to mirror symmetry.
Eyal Markman
TBA
Lars W Christensen
Tate (co)homology was originally defined for modules over group algebras. The cohomological theory has a very satisfactory generalization---Tate--Vogel cohomology or stable cohomology---to the setting of associative rings. The properties of the corresponding generalization of the homological theory are, perhaps, less straightforward and have, in any event, been poorly understood. I will report on recent progress in this direction. The talk is based on joint work with Olgur Celikbas, Li Liang, and Grep Piepmeyer.