(156 intermediate revisions by 19 users not shown)
Line 1:
Line 1:
The AMS Student Chapter Seminar is an informal, graduate student-run seminar on a wide range of mathematical topics. Pastries (usually donuts) will be provided.
The AMS Student Chapter Seminar (aka Donut Seminar) is an informal, graduate student seminar on a wide range of mathematical topics. The goal of the seminar is to promote community building and give graduate students an opportunity to communicate fun, accessible math to their peers in a stress-free (but not sugar-free) environment. Pastries (usually donuts) will be provided.
* '''When:''' Wednesdays, 3:20 PM – 3:50 PM
* '''When:''' Wednesdays, 3:30 PM – 4:00 PM
* '''Where:''' Van Vleck, 9th floor lounge (unless otherwise announced)
* '''Where:''' Van Vleck, 9th floor lounge (unless otherwise announced)
* '''Organizers:''' [https://www.math.wisc.edu/~malexis/ Michel Alexis], [https://www.math.wisc.edu/~drwagner/ David Wagner], [http://www.math.wisc.edu/~nicodemus/ Patrick Nicodemus], [http://www.math.wisc.edu/~thaison/ Son Tu]
Everyone is welcome to give a talk. To sign up, please contact one of the organizers with a title and abstract. Talks are 30 minutes long and should avoid assuming significant mathematical background beyond first-year graduate courses.
Everyone is welcome to give a talk. To sign up, please contact one of the organizers with a title and abstract. Talks are 25 minutes long and should avoid assuming significant mathematical background beyond first-year graduate courses.
The schedule of talks from past semesters can be found [[AMS Student Chapter Seminar, previous semesters|here]].
The schedule of talks from past semesters can be found [[AMS Student Chapter Seminar, previous semesters|here]].
== Fall 2018 ==
== Fall 2021 ==
=== September 29, John Cobb ===
=== September 26, Vladimir Sotirov ===
Title: Rooms on a Sphere
Title: Geometric Algebra
Abstract: A classic combinatorial lemma becomes very simple to state and prove when on the surface of a sphere, leading to easy constructive proofs of some other well known theorems.
Abstract: Geometric algebra, developed at the end of the 19th century by Grassman, Clifford, and Lipschitz, is the forgotten progenitor of the linear algebra we use to this day developed by Gibbs and Heaviside.
=== October 6, Karan Srivastava ===
In this short introduction, I will use geometric algebra to do two things. First, I will construct the field of complex numbers and the division algebra of the quaternions in a coordinate-free way. Second, I will derive the geometric interpretation of complex numbers and quaternions as representations of rotations in 2- and 3-dimensional space.
=== October 3, Juliette Bruce ===
Title: An 'almost impossible' puzzle and group theory
Title: Kissing Conics
Abstract: You're given a chessboard with a randomly oriented coin on every square and a key hidden under one of them; player one knows where the key is and flips a single coin; player 2, using only the information of the new coin arrangement must determine where the key is. Is there a winning strategy? In this talk, we will explore this classic puzzle in a more generalized context, with n squares and d sided dice on every square. We'll see when the game is solvable and in doing so, see how the answer relies on group theory and the existence of certain groups.
Abstract: Have you every wondered how you can easily tell when two plane conics kiss (i.e. are tangent to each other at a point)? If so this talk is for you, if not, well there will be donuts.
=== October 13, John Yin ===
=== October 10, Kurt Ehlert ===
Title: TBA
Title: How to bet when gambling
Abstract: TBA
Abstract: When gambling, typically casinos have the edge. But sometimes we can gain an edge by counting cards or other means. And sometimes we have an edge in the biggest casino of all: the financial markets. When we do have an advantage, then we still need to decide how much to bet. Bet too little, and we leave money on the table. Bet too much, and we risk financial ruin. We will discuss the "Kelly criterion", which is a betting strategy that is optimal in many senses.
=== October 20, Varun Gudibanda ===
=== October 17, Bryan Oakley ===
Title: TBA
Title: Mixing rates
Abstract: TBA
Abstract: Mixing is a necessary step in many areas from biology and atmospheric sciences to smoothies. Because we are impatient, the goal is usually to improve the rate at which a substance homogenizes. In this talk we define and quantify mixing and rates of mixing. We present some history of the field as well as current research and open questions.
=== October 27, Andrew Krenz ===
=== October 24, Micky Soule Steinberg ===
Title: The 3-sphere via the Hopf fibration
Title: What does a group look like?
Abstract: The Hopf fibration is a map from $S^3$ to $S^2$. The preimage (or fiber) of every point under this map is a copy of $S^1$. In this talk I will explain exactly how these circles “fit together” inside the 3-sphere. Along the way we’ll discover some other interesting facts in some hands-on demonstrations using paper and scissors. If there is time I hope to also relate our new understanding of $S^3$ to some other familiar models.
Abstract: In geometric group theory, we often try to understand groups by understanding the metric spaces on which the groups act geometrically. For example, Z^2 acts on R^2 in a nice way, so we can think of the group Z^2 instead as the metric space R^2.
We will try to find (and draw) such a metric space for the solvable Baumslag-Solitar groups BS(1,n). Then we will briefly discuss what this geometric picture tells us about the groups.
=== November 3, TBA ===
=== October 31, Sun Woo Park ===
Title: TBA
Title: Induction-Restriction Operators
Abstract: TBA
Abstract: Given a "nice enough" finite descending sequence of groups <math> G_n \supsetneq G_{n-1} \supsetneq \cdots \supsetneq G_1 \supsetneq \{e\} </math>, we can play around with the relations between induced and restricted representations. We will construct a formal <math> \mathbb{Z} </math>-module of induction-restriction operators on a finite descending sequence of groups <math> \{G_i\} </math>, written as <math> IR_{\{G_i\}} </math>. The goal of the talk is to show that the formal ring <math> IR_{\{G_i\}} </math> is a commutative polynomial ring over <math> \mathbb{Z} </math>. We will also compute the formal ring <math>IR_{\{S_n\}} </math> for a finite descending sequence of symmetric groups <math> S_n \supset S_{n-1} \supset \cdots \supset S_1 </math>. (Apart from the talk, I'll also prepare some treats in celebration of Halloween.)
=== November 10, TBA ===
=== November 7, Polly Yu ===
Title: TBA
Title: Positive solutions to polynomial systems using a (mostly linear) algorithm
Abstract: TBA
Abstract: "Wait, did I read the title correctly? Solving non-linear systems using linear methods?” Yes you did. I will present a linear feasibility problem for your favourite polynomial system; if the algorithm returns an answer, you’ve gotten yourself a positive solution to your system, and more than that, the solution set admits a monomial parametrization.
=== November 17, TBA ===
=== November 14, Soumya Sankar ===
Title: TBA
Title: The worlds of math and dance
Abstract: TBA
Abstract: Are math and dance related? Can we use one to motivate problems in the other? Should we all learn how to dance? I will answer these questions and then we will have some fun with counting problems motivated by dance.
=== November 24, TBA ===
=== November 28, Niudun Wang ===
Title: TBA
Title: Continued fraction's bizarre adventure
Abstract: TBA
Abstract: When using fractions to approximate a real number, continued fraction is known to be one of the fastest ways. For instance, 3 is close to pi (somehow), 22/7 was the best estimate for centuries, 333/106 is better than 3.1415 and so on. Beyond this, I am going to show how continued fraction can also help us with finding the unit group of some real quadratic fields. In particular, how to solve the notorious Pell's equation.
=== December 1, TBA ===
=== December 5, Patrick Nicodemus ===
Title: TBA
Title: Applications of Algorithmic Randomness and Complexity
Abstract: TBA
Abstract: I will introduce the fascinating field of Kolmogorov Complexity and point out its applications in such varied areas as combinatorics, statistical inference and mathematical logic. In fact the Prime Number theorem, machine learning and Godel's Incompleteness theorem can all be investigated fruitfully through a wonderful common lens.
=== December 8, TBA ===
=== December 12, Wanlin Li ===
Title: TBA
Title: Torsors
Abstract: TBA
Abstract: I will talk about the notion of torsor based on John Baez's article 'Torsors made easy' and I will give a lot of examples. This will be a short and light talk to end the semester.
== Spring 2019 ==
=== February 6, TBD ===
Title: TBD
Abstract: TBD
=== February 13, TBD ===
Title: TBD
Abstract: TBD
=== February 20, TBD ===
Title: TBD
Abstract: TBD
=== February 27, TBD ===
Title: TBD
Abstract: TBD
=== March 6, TBD ===
Title: TBD
Abstract: TBD
=== March 13, TBD ===
Title: TBD
Abstract: TBD
=== March 27 (Prospective Student Visit Day), Multiple Speakers ===
Speaker: TBD
Title: TBD
Abstract: TBD
=== April 3, TBD ===
Title: TBD
Abstract: TBD
=== April 10, TBD ===
Title: TBD
Abstract: TBD
=== April 17, TBD ===
Title: TBD
Abstract: TBD
=== April 24, TBD ===
Title: TBD
Abstract: TBD
Revision as of 20:39, 1 October 2021
The AMS Student Chapter Seminar (aka Donut Seminar) is an informal, graduate student seminar on a wide range of mathematical topics. The goal of the seminar is to promote community building and give graduate students an opportunity to communicate fun, accessible math to their peers in a stress-free (but not sugar-free) environment. Pastries (usually donuts) will be provided.
When: Wednesdays, 3:30 PM – 4:00 PM
Where: Van Vleck, 9th floor lounge (unless otherwise announced)
Everyone is welcome to give a talk. To sign up, please contact one of the organizers with a title and abstract. Talks are 25 minutes long and should avoid assuming significant mathematical background beyond first-year graduate courses.
The schedule of talks from past semesters can be found here.
Abstract: A classic combinatorial lemma becomes very simple to state and prove when on the surface of a sphere, leading to easy constructive proofs of some other well known theorems.
October 6, Karan Srivastava
Title: An 'almost impossible' puzzle and group theory
Abstract: You're given a chessboard with a randomly oriented coin on every square and a key hidden under one of them; player one knows where the key is and flips a single coin; player 2, using only the information of the new coin arrangement must determine where the key is. Is there a winning strategy? In this talk, we will explore this classic puzzle in a more generalized context, with n squares and d sided dice on every square. We'll see when the game is solvable and in doing so, see how the answer relies on group theory and the existence of certain groups.
October 13, John Yin
Title: TBA
Abstract: TBA
October 20, Varun Gudibanda
Title: TBA
Abstract: TBA
October 27, Andrew Krenz
Title: The 3-sphere via the Hopf fibration
Abstract: The Hopf fibration is a map from $S^3$ to $S^2$. The preimage (or fiber) of every point under this map is a copy of $S^1$. In this talk I will explain exactly how these circles “fit together” inside the 3-sphere. Along the way we’ll discover some other interesting facts in some hands-on demonstrations using paper and scissors. If there is time I hope to also relate our new understanding of $S^3$ to some other familiar models.