AMS Student Chapter Seminar: Difference between revisions

From UW-Math Wiki
Jump to navigation Jump to search
No edit summary
(93 intermediate revisions by 16 users not shown)
Line 1: Line 1:
The AMS Student Chapter Seminar is an informal, graduate student seminar on a wide range of mathematical topics. Pastries (usually donuts) will be provided.
The AMS Student Chapter Seminar (aka Donut Seminar) is an informal, graduate student seminar on a wide range of mathematical topics. The goal of the seminar is to promote community building and give graduate students an opportunity to communicate fun, accessible math to their peers in a stress-free (but not sugar-free) environment. Pastries (usually donuts) will be provided.


* '''When:''' Wednesdays, 3:20 PM – 3:50 PM
* '''When:''' Wednesdays, 3:30 PM – 4:00 PM
* '''Where:''' Van Vleck, 9th floor lounge (unless otherwise announced)
* '''Where:''' Van Vleck, 9th floor lounge (unless otherwise announced)
* '''Organizers:''' [https://www.math.wisc.edu/~malexis/ Michel Alexis], [https://www.math.wisc.edu/~drwagner/ David Wagner], [http://www.math.wisc.edu/~nicodemus/ Patrick Nicodemus], [http://www.math.wisc.edu/~thaison/ Son Tu]
* '''Organizers:''' [https://people.math.wisc.edu/~ywu495/ Yandi Wu], Maya Banks


Everyone is welcome to give a talk. To sign up, please contact one of the organizers with a title and abstract. Talks are 30 minutes long and should avoid assuming significant mathematical background beyond first-year graduate courses.
Everyone is welcome to give a talk. To sign up, please contact one of the organizers with a title and abstract. Talks are 25 minutes long and should avoid assuming significant mathematical background beyond first-year graduate courses.


The schedule of talks from past semesters can be found [[AMS Student Chapter Seminar, previous semesters|here]].
The schedule of talks from past semesters can be found [[AMS Student Chapter Seminar, previous semesters|here]].


== Spring 2019 ==
== Fall 2021 ==


=== February 6, Xiao Shen (in VV B139)===
=== September 29, John Cobb ===


Title: Limit Shape in last passage percolation
Title: Rooms on a Sphere


Abstract: Imagine the following situation, attached to each point on the integer lattice Z^2 there is an arbitrary amount of donuts.  Fix x and y in Z^2, if you get to eat all the donuts along an up-right path between these two points, what would be the maximum amount of donuts you can get? This model is often called last passage percolation, and I will discuss a classical result about its scaling limit: what happens if we zoom out and let the distance between x and y tend to infinity.
Abstract: A classic combinatorial lemma becomes very simple to state and prove when on the surface of a sphere, leading to easy constructive proofs of some other well known theorems.


=== February 13, Michel Alexis (in VV B139)===
=== October 6, Karan Srivastava ===


Title: An instructive yet useless theorem about random Fourier Series
Title: An 'almost impossible' puzzle and group theory


Abstract: Consider a Fourier series with random, symmetric, independent coefficients. With what probability is this the Fourier series of a continuous function? An <math>L^{p}</math> function? A surprising result is the Billard theorem, which says such a series results almost surely from an <math>L^{\infty}</math> function if and only if it results almost surely from a continuous function. Although the theorem in of itself is kind of useless in of itself, its proof is instructive in that we will see how, via the principle of reduction, one can usually just pretend all symmetric random variables are just coin flips (Bernoulli trials with outcomes <math>\pm 1</math>).
Abstract: You're given a chessboard with a randomly oriented coin on every square and a key hidden under one of them; player one knows where the key is and flips a single coin; player 2, using only the information of the new coin arrangement must determine where the key is. Is there a winning strategy? In this talk, we will explore this classic puzzle in a more generalized context, with n squares and d sided dice on every square. We'll see when the game is solvable and in doing so, see how the answer relies on group theory and the existence of certain groups.


=== February 20, Geoff Bentsen ===
=== October 13, John Yin ===


Title: An Analyst Wanders into a Topology Conference
Title: TBA


Abstract: Fourier Restriction is a big open problem in Harmonic Analysis; given a "small" subset <math>E</math> of <math>R^d</math>, can we restrict the Fourier transform of an <math>L^p</math> function to <math>E</math> and retain any information about our original function? This problem has a nice (somewhat) complete solution for smooth manifolds of co-dimension one. I will explore how to start generalizing this result to smooth manifolds of higher co-dimension, and how a topology paper from the 60s about the hairy ball problem came in handy along the way.
Abstract: TBA


=== February 27, James Hanson ===
=== October 20, Varun Gudibanda ===


Title: What is...a Topometric Space?
Title: TBA


Abstract: Continuous first-order logic is a generalization of first-order logic that is well suited for the study of structures with a natural metric, such as Banach spaces and probability algebras. Topometric spaces are a simple generalization of topological and metric spaces that arise in the study of continuous first-order logic. I will discuss certain topological issues that show up in topometric spaces coming from continuous logic, as well as some partial solutions and open problems. No knowledge of logic will be required for or gained from attending the talk.
Abstract: TBA


=== March 6, Working Group to establish an Association of Mathematics Graduate Students ===
=== October 27, Andrew Krenz ===


Title: Introducing GRAMS (Graduate Representative Association of Mathematics Students)
Title: The 3-sphere via the Hopf fibration


Abstract: Over the past couple months, a handful of us have been working to create the UW Graduate Representative Association of Mathematics Students (GRAMS).  This group, about 5-8 students, is intended to be a liaison between the graduate students and faculty, especially in relation to departmental policies and decisions that affect graduate students. We will discuss what we believe GRAMS ought to look like and the steps needed to implement such a vision, then open up the floor to a Q&A. Check out our [http://sites.google.com/wisc.edu/grams/home website] for more information.
Abstract: The Hopf fibration is a map from $S^3$ to $S^2$.  The preimage (or fiber) of every point under this map is a copy of $S^1$In this talk I will explain exactly how these circles “fit together” inside the 3-sphere.  Along the way we’ll discover some other interesting facts in some hands-on demonstrations using paper and scissors. If there is time I hope to also relate our new understanding of $S^3$ to some other familiar models.


=== March 13, Connor Simpson ===


Title: Counting faces of polytopes with algebra
=== November 3, TBA ===


Abstract: A natural question is: with a fixed dimension and number of vertices, what is the largest number of d-dimensional faces that a polytope can have? We will outline a proof of the answer to this question.
Title: TBA


=== March 26 (Prospective Student Visit Day), Multiple Speakers ===
Abstract: TBA


====Eva Elduque, 11-11:25====
=== November 10, TBA ===


Title: Will it fold flat?
Title: TBA


Abstract: Picture the traditional origami paper crane. It is a 3D object, but if you don’t make the wings stick out, it is flat. This is the case for many origami designs, ranging from very simple (like a paper hat), to complicated tessellations. Given a crease pattern on a piece of paper, one might wonder if it is possible to fold along the lines of the pattern and end up with a flat object. We’ll discuss necessary and sufficient conditions for a crease pattern with only one vertex to fold flat, and talk about what can be said about crease patterns with multiple vertices.
Abstract: TBA


====Soumya Sankar, 11:30-11:55====
=== November 17, TBA ===


Title: An algebro-geometric perspective on integration
Title: TBA


Abstract: Integrals are among the most basic tools we learn in complex analysis and yet are extremely versatile. I will discuss one way in which integrals come up in algebraic geometry and the surprising amount of arithmetic and geometric information this gives us.
Abstract: TBA


====Chun Gan, 12:00-12:25====
=== November 24, TBA ===


Title: Extension theorems in complex analysis
Title: TBA


Abstract: Starting from Riemann's extension theorem in one complex variable, there have been many generalizations to different situations in several complex variables. I will talk about Fefferman's field's medal work on Fefferman extension and also the celebrated Ohsawa-Takegoshi L^2 extension theorem which is now a cornerstone for the application of pluripotential theory to complex analytic geometry.
Abstract: TBA


====Jenny Yeon, 2:00-2:25====
=== December 1, TBA ===


Title: Application of Slope Field
Title: TBA


Abstract: Overview of historical problems in Dynamical Systems and what CRN(chemical reaction network) group at UW Madison does. In particular, what exactly is the butterfly effect? Why is this simple-to-state problem so hard even if it is only 2D (Hilbert's 16th problem)? What are some modern techniques availble? What do the members of CRN group do? Is the theory of CRN applicable? 
Abstract: TBA


====Rajula Srivastava, 2:30-2:55====
=== December 8, TBA ===


Title: The World of Wavelets
Title: TBA


Abstract: Why the fourier series might not be the best way to represent functions in all cases, and why wavelets might be a good alternative in some of these.
Abstract: TBA
 
====Shengyuan Huang, 3:00-3:25====
 
Title: Group objects in various categories
 
Abstract: I will introduce categories and talk about group objects in the category of sets and manifolds.  The latter leads to the theory of Lie group and Lie algebras.  We can then talk about group objects in some other category coming from algebraic geometry and obtain similar results as Lie groups and Lie algebras.
 
====Ivan Ongay Valverde, 3:30-3:55====
 
Title: Games and Topology
 
Abstract: Studying the topology of the real line leads to really interesting questions and facts. One of them is the relation between some kind of infinite games, called topological games, and specific properties of a subsets of reals. In this talk we will study the perfect set game.
 
====Sun Woo Park, 4:00-4:25====
 
Title: Reconstruction of character tables of Sn
 
Abstract: We will discuss how we can relate the columns of the character tables of Sn and the tensor product of irreducible representations over Sn. Using the relation, we will also indicate how we can recover some columns of character tables of Sn. 
 
====Max Bacharach, 4:30-4:55====
 
Title: Clothes, Lice, and Coalescence
 
Abstract: A gentle introduction to coalescent theory, motivated by an application which uses lice genetics to estimate when human ancestors first began wearing clothing.
 
=== April 3, Yu Feng ===
 
Title: Suppression of phase separation by mixing
 
Abstract: The Cahn-Hilliard equation is a classical PDE that models phase separation of two components. We add an advection term so that the two components are stirred by a velocity. We show that there exists a class of fluid that can prevent phase separation and enforce the solution converges to its average exponentially.
 
=== April 17, Hyun-Jong Kim===
 
Title: Musical Harmony for the Mathematician
 
Abstract: Harmony can refer to the way in which multiple notes that are played simultaneously come together in music. I will talk about some aspects of harmony in musical analysis and composition and a few ways to interpret harmonic phenomena mathematically. The mathematical interpretations will mostly revolve around symmetry and integer arithmetic modulo 12.
 
=== April 24, Carrie Chen ===
 
Title: TBD
 
Abstract: TBD
 
== Fall 2019 ==
 
=== September 25, TBD===
 
Title: TBD
 
Abstract: TBD
 
=== October 2, TBD===
 
Title: TBD
 
Abstract: TBD
 
=== October 9, TBD===
 
Title: TBD
 
Abstract: TBD
 
=== October 16, TBD===
 
Title: TBD
 
Abstract: TBD
 
=== October 23, TBD===
 
Title: TBD
 
Abstract: TBD
 
=== October 30, TBD===
 
Title: TBD
 
Abstract: TBD
 
=== November 6, TBD===
 
Title: TBD
 
Abstract: TBD
 
=== November 13, TBD===
 
Title: TBD
 
Abstract: TBD
 
=== November 20, TBD===
 
Title: TBD
 
Abstract: TBD
 
=== December 4, TBD===
 
Title: TBD
 
Abstract: TBD
 
=== December 12, TBD===
 
Title: TBD
 
Abstract: TBD

Revision as of 20:39, 1 October 2021

The AMS Student Chapter Seminar (aka Donut Seminar) is an informal, graduate student seminar on a wide range of mathematical topics. The goal of the seminar is to promote community building and give graduate students an opportunity to communicate fun, accessible math to their peers in a stress-free (but not sugar-free) environment. Pastries (usually donuts) will be provided.

  • When: Wednesdays, 3:30 PM – 4:00 PM
  • Where: Van Vleck, 9th floor lounge (unless otherwise announced)
  • Organizers: Yandi Wu, Maya Banks

Everyone is welcome to give a talk. To sign up, please contact one of the organizers with a title and abstract. Talks are 25 minutes long and should avoid assuming significant mathematical background beyond first-year graduate courses.

The schedule of talks from past semesters can be found here.

Fall 2021

September 29, John Cobb

Title: Rooms on a Sphere

Abstract: A classic combinatorial lemma becomes very simple to state and prove when on the surface of a sphere, leading to easy constructive proofs of some other well known theorems.

October 6, Karan Srivastava

Title: An 'almost impossible' puzzle and group theory

Abstract: You're given a chessboard with a randomly oriented coin on every square and a key hidden under one of them; player one knows where the key is and flips a single coin; player 2, using only the information of the new coin arrangement must determine where the key is. Is there a winning strategy? In this talk, we will explore this classic puzzle in a more generalized context, with n squares and d sided dice on every square. We'll see when the game is solvable and in doing so, see how the answer relies on group theory and the existence of certain groups.

October 13, John Yin

Title: TBA

Abstract: TBA

October 20, Varun Gudibanda

Title: TBA

Abstract: TBA

October 27, Andrew Krenz

Title: The 3-sphere via the Hopf fibration

Abstract: The Hopf fibration is a map from $S^3$ to $S^2$. The preimage (or fiber) of every point under this map is a copy of $S^1$. In this talk I will explain exactly how these circles “fit together” inside the 3-sphere. Along the way we’ll discover some other interesting facts in some hands-on demonstrations using paper and scissors. If there is time I hope to also relate our new understanding of $S^3$ to some other familiar models.


November 3, TBA

Title: TBA

Abstract: TBA

November 10, TBA

Title: TBA

Abstract: TBA

November 17, TBA

Title: TBA

Abstract: TBA

November 24, TBA

Title: TBA

Abstract: TBA

December 1, TBA

Title: TBA

Abstract: TBA

December 8, TBA

Title: TBA

Abstract: TBA