AMS Student Chapter Seminar: Difference between revisions

From UW-Math Wiki
Jump to navigation Jump to search
mNo edit summary
 
(171 intermediate revisions by 19 users not shown)
Line 1: Line 1:
The AMS Student Chapter Seminar is an informal, graduate student-run seminar on a wide range of mathematical topics. Pastries (usually donuts) will be provided.
The AMS Student Chapter Seminar (aka Donut Seminar) is an informal, graduate student seminar on a wide range of mathematical topics. The goal of the seminar is to promote community building and give graduate students an opportunity to communicate fun, accessible math to their peers in a stress-free (but not sugar-free) environment. Pastries (usually donuts) will be provided.


* '''When:''' Wednesdays, 3:20 PM – 3:50 PM
* '''When:''' Wednesdays, 3:30 PM – 4:00 PM
* '''Where:''' Van Vleck, 9th floor lounge (unless otherwise announced)
* '''Where:''' Van Vleck, 9th floor lounge (unless otherwise announced)
* '''Organizers:''' [https://www.math.wisc.edu/~malexis/ Michel Alexis], [https://www.math.wisc.edu/~drwagner/ David Wagner], [http://www.math.wisc.edu/~nicodemus/ Patrick Nicodemus], [http://www.math.wisc.edu/~thaison/ Son Tu]
* '''Organizers:''' Ivan Aidun, Kaiyi Huang, Ethan Schondorf


Everyone is welcome to give a talk. To sign up, please contact one of the organizers with a title and abstract. Talks are 30 minutes long and should avoid assuming significant mathematical background beyond first-year graduate courses.
Everyone is welcome to give a talk. To sign up, please contact one of the organizers with a title and abstract. Talks are 25 minutes long and should avoid assuming significant mathematical background beyond first-year graduate courses.


The schedule of talks from past semesters can be found [[AMS Student Chapter Seminar, previous semesters|here]].
The schedule of talks from past semesters can be found [[AMS Student Chapter Seminar, previous semesters|here]].


== Fall 2018 ==
== Fall 2023==


===September 7, Alex Mine===
Title: My Favorite Fact about Continued Fractions


=== September 26, Vladimir Sotirov ===
===September 14, Mei Rose Connor ===
Title: All Things Necessary and Possible: an introduction to the Kripke semantics of modal logic


Title: Geometric Algebra
Abstract: Modal logic is a branch of formal logic with far–reaching applications to fields such as philosophy, mathematics, computer science, and other parts of logic itself. It deals with which propositions, some of which are necessarily true (in the words of philosophy, a priori) and some of which are possibly true (analogously, a posteriori). But this will not be a philosophy talk. This talk will cover the notation, syntax, and one choice of semantics for modal logic known as the Kripke semantics. The Kripke semantics is a powerful tool that allows us to make connections between modal statements and first–order (or higher–order) logic ones. Along the way, the talk will explore how the simple symbols □ and ♢ can help to model ethics, represent the knowledge of individuals and even lead to an elegant gateway into the First Incompleteness result.


Abstract: Geometric algebra, developed at the end of the 19th century by Grassman, Clifford, and Lipschitz, is the forgotten progenitor of the linear algebra we use to this day developed by Gibbs and Heaviside.
===September 21, Sun Woo Park ===
In this short introduction, I will use geometric algebra to do two things. First, I will construct the field of complex numbers and the division algebra of the quaternions in a coordinate-free way. Second, I will derive the geometric interpretation of complex numbers and quaternions as representations of rotations in 2- and 3-dimensional space.
Title: What I did in my military service II (A functorial formulation of deep learning algorithms)


=== October 3, Juliette Bruce ===
Abstract: Even though deep learning algorithms (say convolutional neural networks, graph neural networks, and attention-transformers) show outstanding performances in executing certain tasks, there are also certain tasks that these algorithms do not perform well. We'll try to give a naive attempt to understand why such problems can occur. Similar to last semester, I will once again recall what I was interested in during the last few months of my 3-year military service in South Korea.


Title: Kissing Conics
===September 28, Caroline Nunn===
Title: Phinary Numbers


Abstract: Have you every wondered how you can easily tell when two plane conics kiss (i.e. are tangent to each other at a point)? If so this talk is for you, if not, well there will be donuts.
Abstract: Everyone and their grandmother knows about binary numbers.  But do you know about phinary numbers? In this talk, we will explore the fun consequences of using an irrational number base system.  We will define phinary representations of real numbers and explore which real numbers can be written using finite or recurring phinary representations.


=== October 10, Kurt Ehlert ===
===October 5, Gabriella Brown===
Title: Topological Entropy in Shift Spaces


Title: How to bet when gambling
Abstract: Entropy is a concept that many STEM disciplines engage with, which results in many different perspectives on what exactly it is. This talk will introduce the perspective of symbolic dynamics by defining shifts of finite type and showing how to compute their topological entropy.


Abstract: When gambling, typically casinos have the edge. But sometimes we can gain an edge by counting cards or other means. And sometimes we have an edge in the biggest casino of all: the financial markets. When we do have an advantage, then we still need to decide how much to bet. Bet too little, and we leave money on the table. Bet too much, and we risk financial ruin. We will discuss the "Kelly criterion", which is a betting strategy that is optimal in many senses.
===October 12, Nakid Cordero===
Title: How to prove the Riemann Hypothesis: a logician's approach


=== October 17, Bryan Oakley ===
Abstract: ''Hint:'' ''Prove that you cannot disprove it.''


Title: Mixing rates
===October 19, Ari Davidovsky===
Title: Using Ultrafilters in Additive Combinatorics


Abstract: Mixing is a necessary step in many areas from biology and atmospheric sciences to smoothies. Because we are impatient, the goal is usually to improve the rate at which a substance homogenizes. In this talk we define and quantify mixing and rates of mixing. We present some history of the field as well as current research and open questions.
Abstract: The goal of this talk is to introduce the idea of ultrafilters and show how they help us prove some cool results from additive combinatorics. The main result proved will be Hindman's Theorem which states if we partition the natural numbers into finitely many sets then one of these sets A contains an infinite subset B such that the sum of any finitely many distinct elements in B will always be in A.


=== October 24, Micky Soule Steinberg ===
===October 26, Otto Baier===
Title: "Circulant Matrices and the Discrete Fourier Transform"


Title: What does a group look like?
Abstract: "Have you ever tried to use a finite difference method on a differential equation with periodic boundary conditions and said, 'I wonder how I could find the eigenvalues of this matrix analytically'? No? Well either way, you're going to find out!


Abstract: In geometric group theory, we often try to understand groups by understanding the metric spaces on which the groups act geometrically. For example, Z^2 acts on R^2 in a nice way, so we can think of the group Z^2 instead as the metric space R^2.
===November 2, Speaker TBA===
Title:


We will try to find (and draw) such a metric space for the solvable Baumslag-Solitar groups BS(1,n). Then we will briefly discuss what this geometric picture tells us about the groups.
Abstract:


=== October 31, Sun Woo Park ===
===November 9, Owen Goff===
Title:


Title: Induction-Restriction Operators
Abstract:


Abstract: Given a "nice enough" finite descending sequence of groups <math> G_n \supsetneq G_{n-1} \supsetneq \cdots \supsetneq G_1 \supsetneq \{e\} </math>, we can play around with the relations between induced and restricted representations. We will construct a formal <math> \mathbb{Z} </math>-module of induction-restriction operators on a finite descending sequence of groups <math> \{G_i\} </math>, written as <math> IR_{\{G_i\}} </math>. The goal of the talk is to show that the formal ring <math> IR_{\{G_i\}} </math> is a commutative polynomial ring over <math> \mathbb{Z} </math>.  We will also compute the formal ring <math>IR_{\{S_n\}} </math> for a finite descending sequence of symmetric groups <math> S_n \supset S_{n-1} \supset \cdots \supset S_1 </math>. (Apart from the talk, I'll also prepare some treats in celebration of Halloween.)
===November 16, Speaker TBA===
Title:


=== November 7, Polly Yu ===
Abstract:


Title: Positive solutions to polynomial systems using a (mostly linear) algorithm
===November 23, CANCELLED FOR THANKSGIVING===


Abstract: "Wait, did I read the title correctly? Solving non-linear systems using linear methods?” Yes you did. I will present a linear feasibility problem for your favourite polynomial system; if the algorithm returns an answer, you’ve gotten yourself a positive solution to your system, and more than that, the solution set admits a monomial parametrization.
===November 30, Speaker TBA===
Title:


=== November 14, Soumya Sankar ===
Abstract:


Title: The worlds of math and dance
===December 7, Speaker TBA===
Title:


Abstract: Are math and dance related? Can we use one to motivate problems in the other? Should we all learn how to dance? I will answer these questions and then we will have some fun with counting problems motivated by dance.
Abstract:


=== November 28, Niudun Wang ===
===December 14, Maybe Cancelled?===
 
Title: Continued fraction's bizarre adventure
 
Abstract: When using fractions to approximate a real number, continued fraction is known to be one of the fastest ways. For instance, 3 is close to pi (somehow), 22/7 was the best estimate for centuries, 333/106 is better than 3.1415 and so on. Beyond this, I am going to show how continued fraction can also help us with finding the unit group of some real quadratic fields. In particular, how to solve the notorious Pell's equation.
 
=== December 5, Patrick Nicodemus ===
 
Title: Applications of Algorithmic Randomness and Complexity
 
Abstract: I will introduce the fascinating field of Kolmogorov Complexity and point out its applications in such varied areas as combinatorics, statistical inference and mathematical logic. In fact the Prime Number theorem, machine learning and Godel's Incompleteness theorem can all be investigated fruitfully through a wonderful common lens.
 
=== December 12, Wanlin Li ===
 
Title: TBD
 
Abstract: TBD
 
== Spring 2019 ==
 
 
=== February 6, TBD ===
 
Title: TBD
 
Abstract: TBD
 
=== February 13, TBD ===
 
Title: TBD
 
Abstract: TBD
 
=== February 20, TBD ===
 
Title: TBD
 
Abstract: TBD
 
=== February 27, TBD ===
 
Title: TBD
 
Abstract: TBD
 
=== March 6, TBD ===
 
Title: TBD
 
Abstract: TBD
 
=== March 13, TBD ===
 
Title: TBD
 
Abstract: TBD
 
=== March 27, TBD ===
 
Title: TBD
 
Abstract: TBD
 
=== April 3, TBD ===
 
Title: TBD
 
Abstract: TBD
 
=== April 10, TBD ===
 
Title: TBD
 
Abstract: TBD
 
=== April 17, TBD ===
 
Title: TBD
 
Abstract: TBD
 
=== April 24, TBD ===
 
Title: TBD
 
Abstract: TBD

Latest revision as of 22:24, 25 October 2023

The AMS Student Chapter Seminar (aka Donut Seminar) is an informal, graduate student seminar on a wide range of mathematical topics. The goal of the seminar is to promote community building and give graduate students an opportunity to communicate fun, accessible math to their peers in a stress-free (but not sugar-free) environment. Pastries (usually donuts) will be provided.

  • When: Wednesdays, 3:30 PM – 4:00 PM
  • Where: Van Vleck, 9th floor lounge (unless otherwise announced)
  • Organizers: Ivan Aidun, Kaiyi Huang, Ethan Schondorf

Everyone is welcome to give a talk. To sign up, please contact one of the organizers with a title and abstract. Talks are 25 minutes long and should avoid assuming significant mathematical background beyond first-year graduate courses.

The schedule of talks from past semesters can be found here.

Fall 2023

September 7, Alex Mine

Title: My Favorite Fact about Continued Fractions

September 14, Mei Rose Connor

Title: All Things Necessary and Possible: an introduction to the Kripke semantics of modal logic

Abstract: Modal logic is a branch of formal logic with far–reaching applications to fields such as philosophy, mathematics, computer science, and other parts of logic itself. It deals with which propositions, some of which are necessarily true (in the words of philosophy, a priori) and some of which are possibly true (analogously, a posteriori). But this will not be a philosophy talk. This talk will cover the notation, syntax, and one choice of semantics for modal logic known as the Kripke semantics. The Kripke semantics is a powerful tool that allows us to make connections between modal statements and first–order (or higher–order) logic ones. Along the way, the talk will explore how the simple symbols □ and ♢ can help to model ethics, represent the knowledge of individuals and even lead to an elegant gateway into the First Incompleteness result.

September 21, Sun Woo Park

Title: What I did in my military service II (A functorial formulation of deep learning algorithms)

Abstract: Even though deep learning algorithms (say convolutional neural networks, graph neural networks, and attention-transformers) show outstanding performances in executing certain tasks, there are also certain tasks that these algorithms do not perform well. We'll try to give a naive attempt to understand why such problems can occur. Similar to last semester, I will once again recall what I was interested in during the last few months of my 3-year military service in South Korea.

September 28, Caroline Nunn

Title: Phinary Numbers

Abstract: Everyone and their grandmother knows about binary numbers. But do you know about phinary numbers? In this talk, we will explore the fun consequences of using an irrational number base system. We will define phinary representations of real numbers and explore which real numbers can be written using finite or recurring phinary representations.

October 5, Gabriella Brown

Title: Topological Entropy in Shift Spaces

Abstract: Entropy is a concept that many STEM disciplines engage with, which results in many different perspectives on what exactly it is. This talk will introduce the perspective of symbolic dynamics by defining shifts of finite type and showing how to compute their topological entropy.

October 12, Nakid Cordero

Title: How to prove the Riemann Hypothesis: a logician's approach

Abstract: Hint: Prove that you cannot disprove it.

October 19, Ari Davidovsky

Title: Using Ultrafilters in Additive Combinatorics

Abstract: The goal of this talk is to introduce the idea of ultrafilters and show how they help us prove some cool results from additive combinatorics. The main result proved will be Hindman's Theorem which states if we partition the natural numbers into finitely many sets then one of these sets A contains an infinite subset B such that the sum of any finitely many distinct elements in B will always be in A.

October 26, Otto Baier

Title: "Circulant Matrices and the Discrete Fourier Transform"

Abstract: "Have you ever tried to use a finite difference method on a differential equation with periodic boundary conditions and said, 'I wonder how I could find the eigenvalues of this matrix analytically'? No? Well either way, you're going to find out!

November 2, Speaker TBA

Title:

Abstract:

November 9, Owen Goff

Title:

Abstract:

November 16, Speaker TBA

Title:

Abstract:

November 23, CANCELLED FOR THANKSGIVING

November 30, Speaker TBA

Title:

Abstract:

December 7, Speaker TBA

Title:

Abstract:

December 14, Maybe Cancelled?