Difference between revisions of "AMS Student Chapter Seminar"

From UW-Math Wiki
Jump to navigation Jump to search
 
(338 intermediate revisions by 31 users not shown)
Line 1: Line 1:
'''General Information''':  AMS Student Chapter Seminar will take place on Wednesday at ''3:00 PM'' in the 9th floor lounge area. Talks should be of interest to the general math community, and generally will not run longer than 30 minutes.  Everyone is welcome to give a talk, please just sign up on this page. Alternatively we will also sign interested people up at the seminar itself.  There will generally be donut provided, although the snack may vary from week to week.
+
The AMS Student Chapter Seminar (aka Donut Seminar) is an informal, graduate student seminar on a wide range of mathematical topics. The goal of the seminar is to promote community building and give graduate students an opportunity to communicate fun, accessible math to their peers in a stress-free (but not sugar-free) environment. Pastries (usually donuts) will be provided.
  
To sign up please provide your name and a title. Abstracts are welcome but optional.
+
* '''When:''' Wednesdays, 3:30 PM – 4:00 PM
 +
* '''Where:''' Van Vleck, 9th floor lounge (unless otherwise announced)
 +
* '''Organizers:''' [https://people.math.wisc.edu/~ywu495/ Yandi Wu], Maya Banks
  
==Spring 2015==
+
Everyone is welcome to give a talk. To sign up, please contact one of the organizers with a title and abstract. Talks are 25 minutes long and should avoid assuming significant mathematical background beyond first-year graduate courses.
  
===September 25, Moisés Herradón===
+
The schedule of talks from past semesters can be found [[AMS Student Chapter Seminar, previous semesters|here]].
  
Title: Winning games and taking names
+
== Fall 2021 ==
  
Abstract:  So let’s say we’re already amazing at playing one game (any game!) at a time and we now we need to play several games at once, to keep it challenging. We will see that doing this results in us being able to define an addition on the collection of all games, and that it actually turns this collection into a Group. I will talk about some of the wonders that lie within the group. Maybe lions? Maybe a field containing both the real numbers and the ordinals? For sure it has to be one of these two!
+
=== September 29, John Cobb ===
  
==Fall 2014==
+
Title: Rooms on a Sphere
  
===September 25, Vladimir Sotirov===
+
Abstract: A classic combinatorial lemma becomes very simple to state and prove when on the surface of a sphere, leading to easy constructive proofs of some other well known theorems.
  
Title: [[Media:Compact-openTalk.pdf|The compact open topology: what is it really?]]
+
=== October 6, Karan Srivastava ===
  
Abstract: The compact-open topology on the space C(X,Y) of continuous functions from X to Y is mysteriously generated by declaring that for each compact subset K of X and each open subset V of Y, the continous functions f: X->Y conducting K inside V constitute an open set. In this talk, I will explain the universal property that uniquely determines the compact-open topology, and sketch a pretty constellation of little-known but elementary facts from domain theory that dispell the mystery of the compact-open topology's definition.
+
Title: An 'almost impossible' puzzle and group theory
  
===October 8, David Bruce===
+
Abstract: You're given a chessboard with a randomly oriented coin on every square and a key hidden under one of them; player one knows where the key is and flips a single coin; player 2, using only the information of the new coin arrangement must determine where the key is. Is there a winning strategy? In this talk, we will explore this classic puzzle in a more generalized context, with n squares and d sided dice on every square. We'll see when the game is solvable and in doing so, see how the answer relies on group theory and the existence of certain groups.
  
Title: Hex on the Beach
+
=== October 13, John Yin ===
  
Abstract: The game of Hex is a two player game played on a hexagonal grid attributed in part to John Nash. (This is the game he is playing in /A Beautiful Mind./) Despite being relatively easy to pick up, and pretty hard to master, this game has surprising connections to some interesting mathematics. This talk will introduce the game of Hex, and then explore some of these connections. *As it is a lot more fun once you've actually played Hex feel free to join me at 3:00pm on the 9th floor to actually play a few games of Hex!*
+
Title: TBA
  
===October 22, Eva Elduque===
+
Abstract: TBA
  
Title: The fold and one cut problem
+
=== October 20, Varun Gudibanda ===
  
Abstract: What shapes can we get by folding flat a piece of paper and making (only) one complete straight cut? The answer is surprising: We can cut out any shape drawn with straight line segments. In the talk, we will discuss the two methods of approaching this problem, focusing on the straight skeleton method, the most intuitive of the two.
+
Title: TBA
  
===November 5, Megan Maguire===
+
Abstract: TBA
  
Title: Train tracks on surfaces
+
=== October 27, Andrew Krenz ===
  
Abstract: What is a train track, mathematically speaking? Are they interesting? Why are they interesting? Come find out!
+
Title: The 3-sphere via the Hopf fibration
  
===November 19, Adrian Tovar-Lopez===
+
Abstract: The Hopf fibration is a map from $S^3$ to $S^2$.  The preimage (or fiber) of every point under this map is a copy of $S^1$.  In this talk I will explain exactly how these circles “fit together” inside the 3-sphere.  Along the way we’ll discover some other interesting facts in some hands-on demonstrations using paper and scissors.  If there is time I hope to also relate our new understanding of $S^3$ to some other familiar models.
  
Title:  Hodgkin and Huxley equations of a single neuron
 
  
===December 3, Zachary Charles===
+
=== November 3, TBA ===
  
Abstract: An addition chain is a sequence of numbers starting at one, such that every number is the sum of two previous numbers. What is the shortest chain ending at a number n? While this is already difficult, we will talk about how addition chains answer life's difficult questions, including: How do we compute 2^4? What can the Ancient Egyptians teach us about elliptic curve cryptography? What about subtraction?
+
Title: TBA
 +
 
 +
Abstract: TBA
 +
 
 +
=== November 10, TBA ===
 +
 
 +
Title: TBA
 +
 
 +
Abstract: TBA
 +
 
 +
=== November 17, TBA ===
 +
 
 +
Title: TBA
 +
 
 +
Abstract: TBA
 +
 
 +
=== November 24, TBA ===
 +
 
 +
Title: TBA
 +
 
 +
Abstract: TBA
 +
 
 +
=== December 1, TBA ===
 +
 
 +
Title: TBA
 +
 
 +
Abstract: TBA
 +
 
 +
=== December 8, TBA ===
 +
 
 +
Title: TBA
 +
 
 +
Abstract: TBA

Latest revision as of 14:39, 1 October 2021

The AMS Student Chapter Seminar (aka Donut Seminar) is an informal, graduate student seminar on a wide range of mathematical topics. The goal of the seminar is to promote community building and give graduate students an opportunity to communicate fun, accessible math to their peers in a stress-free (but not sugar-free) environment. Pastries (usually donuts) will be provided.

  • When: Wednesdays, 3:30 PM – 4:00 PM
  • Where: Van Vleck, 9th floor lounge (unless otherwise announced)
  • Organizers: Yandi Wu, Maya Banks

Everyone is welcome to give a talk. To sign up, please contact one of the organizers with a title and abstract. Talks are 25 minutes long and should avoid assuming significant mathematical background beyond first-year graduate courses.

The schedule of talks from past semesters can be found here.

Fall 2021

September 29, John Cobb

Title: Rooms on a Sphere

Abstract: A classic combinatorial lemma becomes very simple to state and prove when on the surface of a sphere, leading to easy constructive proofs of some other well known theorems.

October 6, Karan Srivastava

Title: An 'almost impossible' puzzle and group theory

Abstract: You're given a chessboard with a randomly oriented coin on every square and a key hidden under one of them; player one knows where the key is and flips a single coin; player 2, using only the information of the new coin arrangement must determine where the key is. Is there a winning strategy? In this talk, we will explore this classic puzzle in a more generalized context, with n squares and d sided dice on every square. We'll see when the game is solvable and in doing so, see how the answer relies on group theory and the existence of certain groups.

October 13, John Yin

Title: TBA

Abstract: TBA

October 20, Varun Gudibanda

Title: TBA

Abstract: TBA

October 27, Andrew Krenz

Title: The 3-sphere via the Hopf fibration

Abstract: The Hopf fibration is a map from $S^3$ to $S^2$. The preimage (or fiber) of every point under this map is a copy of $S^1$. In this talk I will explain exactly how these circles “fit together” inside the 3-sphere. Along the way we’ll discover some other interesting facts in some hands-on demonstrations using paper and scissors. If there is time I hope to also relate our new understanding of $S^3$ to some other familiar models.


November 3, TBA

Title: TBA

Abstract: TBA

November 10, TBA

Title: TBA

Abstract: TBA

November 17, TBA

Title: TBA

Abstract: TBA

November 24, TBA

Title: TBA

Abstract: TBA

December 1, TBA

Title: TBA

Abstract: TBA

December 8, TBA

Title: TBA

Abstract: TBA