Difference between revisions of "Algebraic Geometry Seminar Spring 2018"

From UW-Math Wiki
Jump to navigation Jump to search
Line 48: Line 48:
 
===Tasos Moulinos===
 
===Tasos Moulinos===
  
'''Derived Azumaya Algebrais and Twisted K-theory'''
+
'''Derived Azumaya Algebras and Twisted K-theory'''
  
 
Topological K-theory of dg-categories is a localizing invariant of dg-categories over <math> \mathbb{C} </math>
 
Topological K-theory of dg-categories is a localizing invariant of dg-categories over <math> \mathbb{C} </math>

Revision as of 10:50, 17 January 2018

The seminar meets on Fridays at 2:25 pm in room B113.

Here is the schedule for the previous semester.

Algebraic Geometry Mailing List

  • Please join the AGS Mailing List to hear about upcoming seminars, lunches, and other algebraic geometry events in the department (it is possible you must be on a math department computer to use this link).

Spring 2018 Schedule

date speaker title host(s)
January 26 Tasos Moulinos (UIC) TBA Michael
February 23 Aron Heleodoro (Northwestern) TBA Dima
March 9 Phil Tosteson (Michigan) TBA Steven
April 20 Alena Pirutka (NYU) TBA Jordan
April 27 Alexander Yom Din (Caltech) TBA Dima

Abstracts

Tasos Moulinos

Derived Azumaya Algebras and Twisted K-theory

Topological K-theory of dg-categories is a localizing invariant of dg-categories over [math]\displaystyle{ \mathbb{C} }[/math] taking values in the [math]\displaystyle{ \infty }[/math]-category of [math]\displaystyle{ KU }[/math]-modules. In this talk I describe a relative version of this construction; namely for [math]\displaystyle{ X }[/math] a quasi-compact, quasi-separated [math]\displaystyle{ \mathbb{C} }[/math]-scheme I construct a functor valued in the [math]\displaystyle{ \infty }[/math]-category of sheaves of spectra on [math]\displaystyle{ X(\mathbb{C}) }[/math], the complex points of [math]\displaystyle{ X }[/math]. For inputs of the form [math]\displaystyle{ \operatorname{Perf}(X, A) }[/math] where [math]\displaystyle{ A }[/math] is an Azumaya algebra over [math]\displaystyle{ X }[/math], I characterize the values of this functor in terms of the twisted topological K-theory of [math]\displaystyle{ X(\mathbb{C}) }[/math]. From this I deduce a certain decomposition, for [math]\displaystyle{ X }[/math] a finite CW-complex equipped with a bundle [math]\displaystyle{ P }[/math] of projective spaces over [math]\displaystyle{ X }[/math], of [math]\displaystyle{ KU(P) }[/math] in terms of the twisted topological K-theory of [math]\displaystyle{ X }[/math] ; this is a topological analogue of a result of Quillen’s on the algebraic K-theory of Severi-Brauer schemes.

Aron Heleodoro

TBA

Alexander Yom Din

TBA