Difference between revisions of "Colloquia"

From UW-Math Wiki
Jump to navigation Jump to search
 
(107 intermediate revisions by 10 users not shown)
Line 1: Line 1:
 
__NOTOC__
 
__NOTOC__
  
 +
In 2022-2023, our colloquia will be in-person talks in B239 unless otherwise stated.
  
<b>UW Madison mathematics Colloquium is on Fridays at 4:00 pm. </b>
+
==September 9 , 2022, Friday at 4pm  [https://math.ou.edu/~jing/ Jing Tao] (University of Oklahoma)==
 +
(host: Dymarz, Uyanik, WIMAW)
  
<!--- in Van Vleck B239, '''unless otherwise indicated'''. --->
+
'''On surface homeomorphisms'''
  
 +
In the 1970s, Thurston generalized the classification of self-maps of the torus to surfaces of higher genus, thus completing the work initiated by Nielsen. This is known as the Nielsen-Thurston Classification Theorem. Over the years, many alternative proofs have been obtained, using different aspects of surface theory. In this talk, I will overview the classical theory and sketch the ideas of a new proof, one that offers new insights into the hyperbolic geometry of surfaces. This is joint work with Camille Horbez.
 +
==September 23, 2022, Friday at 4pm  [https://www.pabloshmerkin.org/ Pablo Shmerkin] (University of British Columbia) ==
 +
(host: Guo, Seeger)
  
== January 10, 2022, Monday at 4pm in B239 + [http://go.wisc.edu/wuas48 Live stream], [https://www.stat.berkeley.edu/~gheissari/ Reza Gheissari] (UC Berkeley) ==
+
'''Incidences and line counting: from the discrete to the fractal setting'''
  
(reserved by the hiring committee)
+
How many lines are spanned by a set of planar points?. If the points are collinear, then the answer is clearly "one". If they are not collinear, however, several different answers exist when sets are finite and "how many" is measured by cardinality. I will discuss a bit of the history of this problem and present a recent extension to the continuum setting, obtained in collaboration with T. Orponen and H. Wang. No specialized background will be assumed.
  
'''Surface phenomena in the 2D and 3D Ising model'''
+
==September 30, 2022, Friday at 4pm [https://alejandraquintos.com/ Alejandra Quintos] (University of Wisconsin-Madison, Statistics) ==
 +
(host: Stovall)
  
Since its introduction in 1920, the Ising model has been one of the most studied models of phase transitions in statistical physics. In its low-temperature regime, the model has two thermodynamically stable phases, which, when in contact with each other, form an interface: a random curve in 2D and a random surface in 3D. In this talk, I will survey the rich phenomenology of this interface in 2D and 3D, and describe recent progress in understanding its geometry in various parameter regimes where different surface phenomena and universality classes emerge.
+
'''Dependent Stopping Times and an Application to Credit Risk Theory'''
  
== January 17, 2022, Monday at 4pm in B239 + [http://go.wisc.edu/wuas48 Live stream], [https://sites.google.com/view/lovingmath/home Marissa Loving] (Georgia Tech) ==
+
Stopping times are used in applications to model random arrivals. A standard assumption in many models is that the stopping times are conditionally independent, given an underlying filtration. This is a widely useful assumption, but there are circumstances where it seems to be unnecessarily strong. In the first part of the talk, we use a modified Cox construction, along with the bivariate exponential introduced by Marshall & Olkin (1967), to create a family of stopping times, which are not necessarily conditionally independent, allowing for a positive probability for them to be equal. We also present a series of results exploring the special properties of this construction.
  
(reserved by the hiring committee)
+
In the second part of the talk, we present an application of our model to Credit Risk. We characterize the probability of a market failure which is defined as the default of two or more globally systemically important banks (G-SIBs) in a small interval of time. The default probabilities of the G-SIBs are correlated through the possible existence of a market-wide stress event. We derive various theorems related to market failure probabilities, such as the probability of a catastrophic market failure, the impact of increasing the number of G-SIBs in an economy, and the impact of changing the initial conditions of the economy's state variables. We also show that if there are too many G-SIBs, a market failure is inevitable, i.e., the probability of a market failure tends to one as the number of G-SIBs tends to infinity.
 +
==October 7, 2022, Friday at 4pm  [https://www.daniellitt.com/ Daniel Litt] (University of Toronto)==
 +
(host: Ananth Shankar)
  
'''Symmetries of surfaces: big and small'''
+
==October 14, 2022, Friday at 4pm  [https://math.sciences.ncsu.edu/people/asagema/ Andrew Sageman-Furnas] (North Carolina State)==
 +
(host: Mari-Beffa)
  
We will introduce both finite and infinite-type surfaces and study their collections of symmetries, known as mapping class groups. The study of the mapping class group of finite-type surfaces has played a central role in low-dimensional topology stretching back a hundred years to work of Max Dehn and Jakob Nielsen, and gaining momentum and significance through the celebrated work of Bill Thurston on the geometry of 3-manifolds. In comparison, the study of the mapping class group of infinite-type surfaces has exploded only within the past few years. Nevertheless, infinite-type surfaces appear quite regularly in the wilds of mathematics with connections to dynamics, the topology of 3-manifolds, and even descriptive set theory -- there is a great deal of rich mathematics to be gained in their study! In this talk, we will discuss the way that the study of surfaces intersects and interacts with geometry, algebra, and number theory, as well as some of my own contributions to this vibrant area of study.
+
==October 21, 2022, Friday at 4pm  [https://web.ma.utexas.edu/users/ntran/ Ngoc Mai Tran] (Texas)==
 +
(host: Rodriguez)
 +
== November 7-9, 2022, [https://ai.facebook.com/people/kristin-lauter/ Kristen Lauter] (Facebook) ==
 +
Distinguished lectures
  
== January 21, 2022, Monday at 4pm in B239 + [http://go.wisc.edu/wuas48 Live stream] [https://web.math.princeton.edu/~nfm2/ Nicholas Marshall]  (Princeton) ==
+
(host: Yang).
  
(reserved by the hiring committee)
+
== November 11, 2022, Friday at 4pm [http://users.cms.caltech.edu/~jtropp/ Joel Tropp] (Caltech)==
 +
This is the Annual LAA lecture. See [https://math.wisc.edu/laa-lecture/ this] for its history.
  
'''Laplacian quadratic forms, function regularity, graphs, and optimal transport'''
+
(host: Qin, Jordan)
 +
==November 18, 2022, Friday at 4pm  [TBD]==
 +
(reserved by HC. contact: Stechmann)
 +
==December 2, 2022, Friday at 4pm  [TBD]==
 +
(reserved by HC. contact: Stechmann)
 +
==December 9, 2022, Friday at 4pm  [TBD]==
 +
(reserved by HC. contact: Stechmann)
 +
== Future Colloquia ==
  
In this talk, I will discuss two different applications of harmonic analysis to
+
[[Colloquia/Fall2022|Fall 2022]]
problems motivated by data science. Both problems involve using Laplacian
 
quadratic forms to measure the regularity of functions. In both cases the key
 
idea is to understand how to modify these quadratic forms to achieve a specific
 
goal. First, in the graph setting, we suppose that a collection of m graphs
 
G_1 = (V,E_1),...,G_m=(V,E_m) on a common set of vertices V is given,
 
and consider the problem of finding the 'smoothest' function f : V -> R with
 
respect to all graphs simultaneously, where the notion of smoothness is defined
 
using graph Laplacian quadratic forms. Second, on the unit square [0,1]^2, we
 
consider the problem of efficiently computing linearizations of 2-Wasserstein
 
distance; here, the solution involves quadratic forms of a Witten Laplacian.
 
  
== January 24, 2022, Monday at 4pm in B239 + [http://go.wisc.edu/wuas48 Live stream], [https://sites.google.com/view/skippermath Rachel Skipper] (Ohio State) ==
+
[[Colloquia/Spring2023|Spring 2023]]
  
(reserved by the hiring committee)
+
== Past Colloquia ==
 
+
[[Spring 2022 Colloquiums|Spring 2022]]
'''From simple groups to symmetries of surfaces'''
 
 
 
We will take a tour through some families of groups of historic importance in geometric group theory, including self-similar groups and Thompson’s groups. We will discuss the rich, continually developing theory of these groups which act as symmetries of the Cantor space, and how they can be used to understand the variety of infinite simple groups. Finally, we will discuss how these groups are serving an important role in the newly developing field of big mapping class groups which are used to describe symmetries of surfaces.
 
 
 
== February 25, 2022, [https://sites.google.com/view/rohini-ramadas/home Rohini Ramadas] (Warwick) ==  
 
 
 
(WIMAW)
 
 
 
 
 
== March 1-4, 2022,  [http://www.math.stonybrook.edu/~roblaz/ Robert Lazarsfeld] (Stony Brook) ==
 
 
 
('''Departmental Distinguished Lecture series''')
 
 
 
== April 8, 2022, [https://math.temple.edu/~tuf27009/index.html Matthew Stover] (Temple University) ==
 
 
 
(hosted by Zimmer)
 
  
== April 15, 2022, RESERVED, (TBA) ==
 
 
(hosted by Gong)
 
 
 
== April 22, 2022, [https://www.math.uni-kiel.de/analysis/de/mueller Detlef Müller] (Kiel, Germany) ==
 
 
(hosted by Seeger and Stovall)
 
 
== April 25-26-27 (Monday [VV B239], Tuesday [Chamberlin 2241], Wednesday [VV B239]) 4 pm  [https://math.mit.edu/directory/profile.php?pid=1461 Larry Guth] (MIT) ==
 
 
('''Departmental Distinguished Lecture series''')
 
 
== Past Colloquia ==
 
 
[[Colloquia/Fall2021|Fall 2021]]
 
[[Colloquia/Fall2021|Fall 2021]]
  

Latest revision as of 06:38, 21 September 2022


In 2022-2023, our colloquia will be in-person talks in B239 unless otherwise stated.

September 9 , 2022, Friday at 4pm Jing Tao (University of Oklahoma)

(host: Dymarz, Uyanik, WIMAW)

On surface homeomorphisms

In the 1970s, Thurston generalized the classification of self-maps of the torus to surfaces of higher genus, thus completing the work initiated by Nielsen. This is known as the Nielsen-Thurston Classification Theorem. Over the years, many alternative proofs have been obtained, using different aspects of surface theory. In this talk, I will overview the classical theory and sketch the ideas of a new proof, one that offers new insights into the hyperbolic geometry of surfaces. This is joint work with Camille Horbez.

September 23, 2022, Friday at 4pm Pablo Shmerkin (University of British Columbia)

(host: Guo, Seeger)

Incidences and line counting: from the discrete to the fractal setting

How many lines are spanned by a set of planar points?. If the points are collinear, then the answer is clearly "one". If they are not collinear, however, several different answers exist when sets are finite and "how many" is measured by cardinality. I will discuss a bit of the history of this problem and present a recent extension to the continuum setting, obtained in collaboration with T. Orponen and H. Wang. No specialized background will be assumed.

September 30, 2022, Friday at 4pm Alejandra Quintos (University of Wisconsin-Madison, Statistics)

(host: Stovall)

Dependent Stopping Times and an Application to Credit Risk Theory

Stopping times are used in applications to model random arrivals. A standard assumption in many models is that the stopping times are conditionally independent, given an underlying filtration. This is a widely useful assumption, but there are circumstances where it seems to be unnecessarily strong. In the first part of the talk, we use a modified Cox construction, along with the bivariate exponential introduced by Marshall & Olkin (1967), to create a family of stopping times, which are not necessarily conditionally independent, allowing for a positive probability for them to be equal. We also present a series of results exploring the special properties of this construction.

In the second part of the talk, we present an application of our model to Credit Risk. We characterize the probability of a market failure which is defined as the default of two or more globally systemically important banks (G-SIBs) in a small interval of time. The default probabilities of the G-SIBs are correlated through the possible existence of a market-wide stress event. We derive various theorems related to market failure probabilities, such as the probability of a catastrophic market failure, the impact of increasing the number of G-SIBs in an economy, and the impact of changing the initial conditions of the economy's state variables. We also show that if there are too many G-SIBs, a market failure is inevitable, i.e., the probability of a market failure tends to one as the number of G-SIBs tends to infinity.

October 7, 2022, Friday at 4pm Daniel Litt (University of Toronto)

(host: Ananth Shankar)

October 14, 2022, Friday at 4pm Andrew Sageman-Furnas (North Carolina State)

(host: Mari-Beffa)

October 21, 2022, Friday at 4pm Ngoc Mai Tran (Texas)

(host: Rodriguez)

November 7-9, 2022, Kristen Lauter (Facebook)

Distinguished lectures

(host: Yang).

November 11, 2022, Friday at 4pm Joel Tropp (Caltech)

This is the Annual LAA lecture. See this for its history.

(host: Qin, Jordan)

November 18, 2022, Friday at 4pm [TBD]

(reserved by HC. contact: Stechmann)

December 2, 2022, Friday at 4pm [TBD]

(reserved by HC. contact: Stechmann)

December 9, 2022, Friday at 4pm [TBD]

(reserved by HC. contact: Stechmann)

Future Colloquia

Fall 2022

Spring 2023

Past Colloquia

Spring 2022

Fall 2021

Spring 2021

Fall 2020

Spring 2020

Fall 2019

Spring 2019

Fall 2018

Spring 2018

Fall 2017

Spring 2017

Fall 2016

Spring 2016

Fall 2015

Spring 2015

Fall 2014

Spring 2014

Fall 2013

Spring 2013

Fall 2012

WIMAW