Difference between revisions of "Dynamics Seminar"
(One intermediate revision by one other user not shown) | |||
Line 24: | Line 24: | ||
|September 26 | |September 26 | ||
|[https://sites.google.com/view/beibei-liu/ Beibei Liu] (MIT) | |[https://sites.google.com/view/beibei-liu/ Beibei Liu] (MIT) | ||
− | |[[# Beibei Liu (Georgia Tech) | | + | |[[# Beibei Liu (Georgia Tech) |The critical exponent: old and new]] |
| Dymarz | | Dymarz | ||
|- | |- | ||
Line 92: | Line 92: | ||
===Beibei Liu=== | ===Beibei Liu=== | ||
+ | The critical exponent is an important numerical invariant of discrete groups acting on negatively curved Hadamard manifolds, Gromov hyperbolic spaces, and higher-rank symmetric spaces. In this talk, I will focus on discrete groups acting on hyperbolic spaces (i.e., Kleinian groups), which is a family of important examples of these three types of spaces. In particular, I will review the classical result relating the critical exponent to the Hausdorff dimension using the Patterson-Sullivan theory and introduce new results about Kleinian groups with small or large critical exponents. | ||
===Grace Work=== | ===Grace Work=== | ||
Line 125: | Line 126: | ||
|- | |- | ||
|January 30 | |January 30 | ||
− | | | + | |Pierre-Louis Blayac (Michigan) |
|[[TBA| ''TBA'']] | |[[TBA| ''TBA'']] | ||
− | | | + | |Zhu and Zimmer |
|- | |- | ||
|March 27 | |March 27 |
Revision as of 11:59, 21 September 2022
The Dynamics seminar meets in room B329 of Van Vleck Hall on Mondays from 2:30pm - 3:20pm. To sign up for the mailing list send an email from your wisc.edu address to dynamics+join@g-groups.wisc.edu. For more information, contact Paul Apisa, Marissa Loving, Caglar Uyanik, or Chenxi Wu. Contact Caglar Uyanik with your wisc email to get the zoom link for virtual talks.
Fall 2022
date | speaker | title | host(s) |
---|---|---|---|
September 12 | Jing Tao (OU) | Genericity of pseudo-Anosov maps | Dymarz and Uyanik |
September 19 | Rebekah Palmer (Temple)(virtual) | Totally geodesic surfaces in knot complements | VIRTUAL |
September 26 | Beibei Liu (MIT) | The critical exponent: old and new | Dymarz |
October 3 | Grace Work (UW-Madison) | TBA | local |
October 10 | Jean Pierre Mutanguha (Princeton) | TBA | Uyanik |
October 17 | Anthony Sanchez (UCSD) | TBA | Uyanik |
October 24 | Alena Erchenko (U Chicago) | TBA | Uyanik and Work |
October 31 | Feng Zhu (UW Madison) | TBA | local |
November 7 | Ethan Farber (BC) | TBA | Loving |
November 14 | Lukas Geyer (Montana) | TBA | Burkart |
November 21 | Harry Hyungryul Baik (KAIST) | TBA | Wu |
November 28 | Marissa Loving (UW Madison) | TBA | local |
December 5 | MurphyKate Montee (Carleton) | TBA | Dymarz |
December 12 | Tina Torkaman (Harvard) | TBA | Uyanik |
Fall Abstracts
Jing Tao
By Nielsen-Thurston classification, every homeomorphism of a surface is isotopic to one of three types: finite order, reducible, or pseudo-Anosov. While there are these three types, it is natural to wonder which type is more prevalent. In any reasonable way to sample matrices in SL(2,Z), irreducible matrices should be generic. One expects something similar for pseudo-Anosov maps. In joint work with Erlandsson and Souto, we define a notion of genericity and show that pseudo-Anosov maps are indeed generic. More precisely, we consider several "norms" on the mapping class group of the surface, and show that the proportion of pseudo-Anosov maps in a ball of radius r tends to 1 as r tends to infinity. The norms can be thought of as the natural analogues of matrix norms on SL(2,Z).
Rebekah Palmer
Studying totally geodesic surfaces has been essential in understanding the geometry and topology of hyperbolic 3-manifolds. Recently, Bader--Fisher--Miller--Stover showed that containing infinitely many such surfaces compels a manifold to be arithmetic. We are hence interested in counting totally geodesic surfaces in hyperbolic 3-manifolds in the finite (possibly zero) case. In joint work with Khánh Lê, we expand an obstruction, due to Calegari, to the existence of these surfaces. On the flipside, we prove the uniqueness of known totally geodesic surfaces by considering their behavior in the universal cover. This talk will explore this progress for both the uniqueness and the absence.
Beibei Liu
The critical exponent is an important numerical invariant of discrete groups acting on negatively curved Hadamard manifolds, Gromov hyperbolic spaces, and higher-rank symmetric spaces. In this talk, I will focus on discrete groups acting on hyperbolic spaces (i.e., Kleinian groups), which is a family of important examples of these three types of spaces. In particular, I will review the classical result relating the critical exponent to the Hausdorff dimension using the Patterson-Sullivan theory and introduce new results about Kleinian groups with small or large critical exponents.
Grace Work
Jean Pierre Mutanguha
Anthony Sanchez
Alena Erchenko
Feng Zhu
Ethan Farber
Lukas Geyer
Harry Baik
Marissa Loving
MurphyKate Montee
Tina Torkaman
Spring 2023
date | speaker | title | host(s) |
---|---|---|---|
January 30 | Pierre-Louis Blayac (Michigan) | TBA | Zhu and Zimmer |
March 27 | Carolyn Abbott (Brandeis) | TBA | Dymarz and Uyanik |
April 10 | Jon Chaika (Utah) | TBA | Apisa and Uyanik |
April 24 | Priyam Patel (Utah) | TBA | Loving and Uyanik |
Spring Abstracts
Carolyn Abbott
Priyam Patel
Archive of past Dynamics seminars
2021-2022 Dynamics_Seminar_2021-2022
2020-2021 Dynamics_Seminar_2020-2021