Difference between revisions of "Fall 2022 analysis seminar"

From UW-Math Wiki
Jump to navigation Jump to search
Line 176: Line 176:
  
 
Abstract: In the recent paper with P. Vojta, we introduced the so-called beta-constant, and used it to extend the Cartan's Second Main Theorem in Nevanlinna theory and Schmidt's subspace theorem in Diophantine approximation. It turns out the beta-constant is also used in the algebro-geometric stability criterion in the Fano's case. In this talk, I'll describe and explore the somewhat mysterious connection. The talk is based on the recent joint paper with Yan He entitled "The stability threshold and Diophantine approximation", Proc. AMS, 2022.
 
Abstract: In the recent paper with P. Vojta, we introduced the so-called beta-constant, and used it to extend the Cartan's Second Main Theorem in Nevanlinna theory and Schmidt's subspace theorem in Diophantine approximation. It turns out the beta-constant is also used in the algebro-geometric stability criterion in the Fano's case. In this talk, I'll describe and explore the somewhat mysterious connection. The talk is based on the recent joint paper with Yan He entitled "The stability threshold and Diophantine approximation", Proc. AMS, 2022.
 +
 +
===Name===
 +
 +
Title
 +
 +
Abstract
  
  
Line 183: Line 189:
  
 
Abstract
 
Abstract
 +
  
  

Revision as of 11:14, 2 September 2022

The 2022-2023 Analysis Seminar will be organized by Shaoming Guo. The regular time and place for the Seminar will be Tuesdays at 4:00 p.m. in Van Vleck B139 (in some cases the seminar may be scheduled at different time to accommodate speakers). If you would like to subscribe to the Analysis seminar list, send a blank email to analysis+join (at) g-groups (dot) wisc (dot) edu. If you are from an institution different than UW-Madison, please send as well as an additional email to Shaoming. If you'd like to suggest speakers for the spring semester please contact Shaoming.

All talks will be in-person unless otherwise specified.





Analysis Seminar Schedule

date speaker institution title host(s)
08.23 Gustavo Garrigós University of Murcia Approximation by N-term trigonometric polynomials and greedy algorithms Andreas Seeger
08.30 Simon Myerson Warwick Forms of the Circle Method Shaoming Guo
09.13

(first week of semester)

Zane Li UW Madison A decoupling interpretation of an old argument for Vinogradov's Mean Value Theorem Analysis group
09.16

(Friday, 1:20-2:10, Room B139)

Franky Li UW Madison Analysis group
09.20 Andrej Zlatoš UCSD Title Hung Tran
09.23-09.25 RTG workshop in Harmonic Analysis Shaoming Guo and Andreas Seeger
09.27

(online, special time, 3-4pm)

Michael Magee Durham Title Simon Marshall
10.04 Philip Gressman UPenn Title Shaoming Guo
10.11 Detlef Müller CAU Kiel Title Betsy Stovall and Andreas Seeger
10.14 (1:00 PM Friday. Joint with Geometry & Topology Seminar) Min Ru U of Houston The K-stability and Nevanlinna/Diophantine theory Xianghong Gong
10.18 Madelyne M. Brown UNC Fourier coefficients of restricted eigenfunctions Betsy Stovall
10.24 (Monday, B135) Milivoje Lukic Rice Title Sergey Denisov
11.01 Ziming Shi Rutgers Title Xianghong Gong
11.08 Robert Fraser Wichita State University Title Andreas Seeger
11.15 Brian Cook Virginia Tech Title Brian Street
11.22 Thanksgiving
11.29 (tent reserved) Title Betsy Stovall
12.06 Shengwen Gan MIT Title Shaoming Guo and Andreas Seeger
12.13 Óscar Domínguez Universidad Complutense Madrid and University of Lyons Title Andreas Seeger and Brian Street

Abstracts

Gustavo Garrigós

Title: Approximation by N-term trigonometric polynomials and greedy algorithms

Link to Abstract: [1]

Simon Myerson

Title: Forms of the circle method

Abstract: The circle method is an analytic proof strategy, typically used in number theory when one wants to estimate the number of integer lattice points in some interesting set. Traditionally the first step is to evaluate the innocent integral $ \int_0^1 e^{2 \pi i t n} dt $ to give 1 if $ n = 0 $ and 0 if $ n $ is any other integer. Since Heath-Brown’s delta-method in the 90s this simplest step has been embellished with carefully constructed partitions of unity. In this informal discussion I will interpret these as different versions of the circle method and suggest how to understand their relative advantages.


Zane Li

Title: A decoupling interpretation of an old argument for Vinogradov's Mean Value Theorem

Abstract: There are two proofs of Vinogradov's Mean Value Theorem (VMVT), the harmonic analysis decoupling proof by Bourgain, Demeter, and Guth from 2015 and the number theoretic efficient congruencing proof by Wooley from 2017. While there has been recent work illustrating the relation between these two methods, VMVT has been around since 1935. It is then natural to ask: What does old partial progress on VMVT look like in harmonic analysis language? How similar or different does it look from current decoupling proofs? We talk about a refinement of a 1973 argument of Karatsuba that showed partial progress towards VMVT and interpret this in decoupling language. This yields an argument that only uses rather simple geometry of the moment curve. This is joint work with Brian Cook, Kevin Hughes, Olivier Robert, Akshat Mudgal, and Po-Lam Yung.


Madelyne M. Brown

Title: Fourier coefficients of restricted eigenfunctions

Abstract: We will discuss the growth of Laplace eigenfunctions on a compact manifold when restricted to a submanifold. We analyze the behavior of the restricted eigenfunctions by studying their Fourier coefficients with respect to an arbitrary orthonormal basis for the submanifold. We give an explicit bound on these coefficients depending on how the defect measures for the two collections of functions, the eigenfunctions and the basis, relate.


Min Ru

Title: The K-stability and Nevanlinna/Diophantine theory

Abstract: In the recent paper with P. Vojta, we introduced the so-called beta-constant, and used it to extend the Cartan's Second Main Theorem in Nevanlinna theory and Schmidt's subspace theorem in Diophantine approximation. It turns out the beta-constant is also used in the algebro-geometric stability criterion in the Fano's case. In this talk, I'll describe and explore the somewhat mysterious connection. The talk is based on the recent joint paper with Yan He entitled "The stability threshold and Diophantine approximation", Proc. AMS, 2022.

Name

Title

Abstract


Name

Title

Abstract




Links to previous analysis seminars