Graduate student reading seminar

From UW-Math Wiki
Revision as of 10:23, 16 February 2016 by Jskim (talk | contribs) (→‎2016 Spring)
Jump to navigation Jump to search

2016 Spring

Tuesday, 2:25pm, B321 Van Vleck

2/16 : Jinsu

Lyapunov function for Markov Processes.

For ODE, we can show stability of the trajectory using Lyapunov functions.

There is an analogy for Markov Processes. I'd like to talk about the existence of stationary distribution with Lyapunov function.

In some cases, it is also possible to show the rate of convergence to the stationary distribution.

2015 Fall

This semester we will focus on tools and methods.

Seminar notes (tex file, bib file)

9/15, 9/22: Elnur

I will talk about large deviation theory and its applications. For the first talk, my plan is to introduce Gartner-Ellis theorem and show a few applications of it to finite state discrete time Markov chains.

9/29, 10/6, 10/13 :Dae Han

10/20, 10/27, 11/3: Jessica

I will first present an overview of concentration of measure and concentration inequalities with a focus on the connection with related topics in analysis and geometry. Then, I will present Log-Sobolev inequalities and their connection to concentration of measure.

11/10, 11/17: Hao Kai

11/24, 12/1, 12/8, 12/15: Chris

2016 Spring:

2/2, 2/9: Louis

2/16, 2/23: Jinsu

3/1, 3/8: Hans

2015 Spring

2/3, 2/10: Scott

An Introduction to Entropy for Random Variables

In these lectures I will introduce entropy for random variables and present some simple, finite state-space, examples to gain some intuition. We will prove the MacMillan Theorem using entropy and the law of large numbers. Then I will introduce relative entropy and prove the Markov Chain Convergence Theorem. Finally I will define entropy for a discrete time process. The lecture notes can be found at

2/17, 2/24: Dae Han

3/3, 3/10: Hans

3/17, 3/24: In Gun

4/7, 4/14: Jinsu

4/21, 4/28: Chris N.

2014 Fall

9/23: Dave

I will go over Mike Giles’ 2008 paper “Multi-level Monte Carlo path simulation.” This paper introduced a new Monte Carlo method to approximate expectations of SDEs (driven by Brownian motions) that is significantly more efficient than what was the state of the art. This work opened up a whole new field in the numerical analysis of stochastic processes as the basic idea is quite flexible and has found a variety of applications including SDEs driven by Brownian motions, Levy-driven SDEs, SPDEs, and models from biology

9/30: Benedek

A very quick introduction to Stein's method.

I will give a brief introduction to Stein's method, mostly based on the the first couple of sections of the following survey article:

Ross, N. (2011). Fundamentals of Stein’s method. Probability Surveys, 8, 210-293.

The following webpage has a huge collection of resources if you want to go deeper:

Note that the Midwest Probability Colloquium ( will have a tutorial program on Stein's method this year.

10/7, 10/14: Chris J. An introduction to the (local) martingale problem.

10/21, 10/28: Dae Han

11/4, 11/11: Elnur

11/18, 11/25: Chris N. Free Probability with an emphasis on C* and Von Neumann Algebras

12/2, 12/9: Yun Zhai

2014 Spring

1/28: Greg

2/04, 2/11: Scott

Reflected Brownian motion, Occupation time, and applications.

2/18: Phil-- Examples of structure results in probability theory.

2/25, 3/4: Beth-- Derivative estimation for discrete time Markov chains

3/11, 3/25: Chris J Some classical results on stationary distributions of Markov processes

4/1, 4/8: Chris N

4/15, 4/22: Yu Sun

4/29. 5/6: Diane

2013 Fall

9/24, 10/1: Chris A light introduction to metastability

10/8, Dae Han Majoring multiplicative cascades for directed polymers in random media

10/15, 10/22: no reading seminar

10/29, 11/5: Elnur Limit fluctuations of last passage times

11/12: Yun Helffer-Sj?ostrand representation and Brascamp-Lieb inequality for stochastic interface models

11/19, 11/26: Yu Sun

12/3, 12/10: Jason

2013 Spring

2/13: Elnur

Young diagrams, RSK correspondence, corner growth models, distribution of last passage times.

2/20: Elnur

2/27: Chris

A brief introduction to enlargement of filtration and the Dufresne identity Notes

3/6: Chris

3/13: Dae Han

An introduction to random polymers

3/20: Dae Han

Directed polymers in a random environment: path localization and strong disorder

4/3: Diane

Scale and Speed for honest 1 dimensional diffusions

Rogers & Williams - Diffusions, Markov Processes and Martingales
Ito & McKean - Diffusion Processes and their Sample Paths
Breiman - Probability

4/10: Diane

4/17: Yun

Introduction to stochastic interface models

4/24: Yun

Dynamics and Gaussian equilibrium sytems

5/1: This reading seminar will be shifted because of a probability seminar.

5/8: Greg, Maso

The Bethe ansatz vs. The Replica Trick. This lecture is an overview of the two approaches. See [1] for a nice overview.

5/15: Greg, Maso

Rigorous use of the replica trick.