# Difference between revisions of "NTS"

Line 76: | Line 76: | ||

| bgcolor="#E0E0E0" align="center" | Apr 7 | | bgcolor="#E0E0E0" align="center" | Apr 7 | ||

| bgcolor="#F0B0B0" align="center" | Alexander Petrov | | bgcolor="#F0B0B0" align="center" | Alexander Petrov | ||

− | | bgcolor="#BCE2FE"| | + | | bgcolor="#BCE2FE"| [https://hilbert.math.wisc.edu/wiki/index.php/NTS_ABSTRACTSpring2022#Apr_7 On arithmetic characterization of local systems of geometric origin] |

|- | |- | ||

| bgcolor="#E0E0E0" align="center" | Apr 14 | | bgcolor="#E0E0E0" align="center" | Apr 14 |

## Revision as of 10:02, 4 April 2022

# Number Theory / Representation Theory Seminar, University of Wisconsin - Madison

**When:**Thursdays, 2:30 PM – 3:30 PM**Where:**Van Vleck B235 or remotely- Please join the NT/RT mailing list: (you must be on a math department computer to use this link).

There is also an accompanying graduate seminar, which meets on Tuesdays.

You can find our Spring 2022 speakers in Spring 2022.

You can find our Fall 2021 speakers in Fall 2021.

You can find our Spring 2021 speakers in Spring 2021.

You can find our Fall 2020 speakers in Fall 2020.

You can find our Spring 2020 speakers in Spring 2020.

You can find our Fall 2019 speakers in Fall 2019.

You can find our Spring 2019 speakers in Spring 2019.

You can find our Fall 2018 speakers in Fall 2018.

# Spring 2022 Semester

*to be confirmed

# Organizer contact information

Boya Wen bwen25@wisc.edu or Ziquan Yang zy352@wisc.edu

# VaNTAGe

This is a virtual math seminar on open conjectures in number theory and arithmetic geometry. The seminar will be presented in English at (1 pm Eastern time)=(10 am Pacific time), every first and third Tuesday of the month. The Math Department of UW, Madison broadcasts the seminar in the math lounge room at Room 911, Van Vleck Building. For more information, please visit the official website: VaNTAGe

# New Developments in Number Theory

This is a new seminar series that features the work of early career number theorists from around the globe. For more information, please visit the official website: NDNT

Return to the Algebra Group Page