Difference between revisions of "NTS/Abstracts"

From UW-Math Wiki
Jump to navigation Jump to search
Line 20: Line 20:
 
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"
 
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"
 
|-
 
|-
| bgcolor="#F0A0A0" align="center" style="font-size:125%" | '''Alexander Fish''' (University of Sydney, Australia)
+
| bgcolor="#F0A0A0" align="center" style="font-size:125%" | '''SPEAKER''' (HOME)
 
|-
 
|-
| bgcolor="#BCD2EE"  align="center" | Title: Ergodic Plunnecke inequalities with applications to sumsets of infinite sets in countable abelian groups
+
| bgcolor="#BCD2EE"  align="center" | TITLE
 
|-
 
|-
 
| bgcolor="#BCD2EE"  |   
 
| bgcolor="#BCD2EE"  |   
Abstract: By use of recent ideas of Petridis, we extend Plunnecke inequalities for sumsets of finite sets in abelian groups to the setting of measure-preserving systems. The main difference in the new setting is that instead of a finite set of translates we have an analogous inequality for a countable set of translates. As an application, by use of Furstenberg correspondence principle, we obtain new Plunnecke type inequalities for lower and upper Banach density in countable abelian groups. Joint work with Michael Bjorklund, Chalmers.
+
ABSTRACT
 
|}                                                                         
 
|}                                                                         
 
</center>
 
</center>
 +
  
 
<br>
 
<br>
Line 36: Line 37:
 
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"
 
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"
 
|-
 
|-
| bgcolor="#F0A0A0" align="center" style="font-size:125%" | '''John Voight''' (Dartmouth)
+
| bgcolor="#F0A0A0" align="center" style="font-size:125%" | '''SPEAKER''' (HOME)
 
|-
 
|-
| bgcolor="#BCD2EE"  align="center" | Title: Numerical calculation of three-point branched covers of the projective line
+
| bgcolor="#BCD2EE"  align="center" | TITLE
 
|-
 
|-
 
| bgcolor="#BCD2EE"  |   
 
| bgcolor="#BCD2EE"  |   
Abstract: We exhibit a numerical method to compute three-point branched covers of the complex projective line.  We develop algorithms for working explicitly with Fuchsian triangle groups and their finite index subgroups, and we use these algorithms to compute power series expansions of modular forms on these groups.  This is joint work with Michael Klug, Michael Musty, and Sam Schiavone.
+
ABSTRACT
 
|}                                                                         
 
|}                                                                         
 
</center>
 
</center>
 +
  
 
<br>
 
<br>
Line 52: Line 54:
 
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"
 
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"
 
|-
 
|-
| bgcolor="#F0A0A0" align="center" style="font-size:125%" | '''Nir Avni''' (Northwestern)
+
| bgcolor="#F0A0A0" align="center" style="font-size:125%" | '''SPEAKER''' (HOME)
 
|-
 
|-
| bgcolor="#BCD2EE"  align="center" | Title: Representation zeta functions
+
| bgcolor="#BCD2EE"  align="center" | TITLE
 
|-
 
|-
 
| bgcolor="#BCD2EE"  |   
 
| bgcolor="#BCD2EE"  |   
Abstract: I will talk about connections between the following:
+
ABSTRACT
1) Asymptotic representation theory of an arithmetic lattice ''G''('''Z'''). More precisely, the question of how many ''n''-dimensional representations does ''G''('''Z''') have.
 
2) The distribution of a random commutator in the ''p''-adic analytic group ''G''('''Z'''<sub>''p''</sub>).
 
3) The complex geometry of the moduli spaces of ''G''-local systems on a Riemann surface, and, more precisely, the structure of its singularities.
 
 
|}                                                                         
 
|}                                                                         
 
</center>
 
</center>
Line 71: Line 70:
 
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"
 
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"
 
|-
 
|-
| bgcolor="#F0A0A0" align="center" style="font-size:125%" | '''Jennifer Park''' (MIT)
+
| bgcolor="#F0A0A0" align="center" style="font-size:125%" | '''SPEAKER''' (HOME)
 
|-
 
|-
| bgcolor="#BCD2EE"  align="center" | Title: Effective Chabauty for symmetric power of curves
+
| bgcolor="#BCD2EE"  align="center" | TITLE
 
|-
 
|-
 
| bgcolor="#BCD2EE"  |   
 
| bgcolor="#BCD2EE"  |   
Abstract: While we know by Faltings' theorem that curves of genus at least 2 have finitely many rational points, his theorem is not effective. In 1985, Coleman showed that Chabauty's method, which works when the Mordell-Weil rank of the Jacobian of the curve is small, can be used to give a good effective bound on the number of rational points of curves of genus g > 1. In this talk, we draw ideas from tropical geometry to show that we can also give an effective bound on the number of rational points of Sym^d(X) that are not parametrized by a projective space or a coset of an abelian variety, where X is a curve of genus g > d, when the Mordell-Weil rank of the Jacobian of the curve is at most g-d.
+
ABSTRACT
 
|}                                                                         
 
|}                                                                         
 
</center>
 
</center>
Line 87: Line 86:
 
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"
 
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"
 
|-
 
|-
| bgcolor="#F0A0A0" align="center" style="font-size:125%" | '''Yueke Hu''' (Madison)
+
| bgcolor="#F0A0A0" align="center" style="font-size:125%" | '''SPEAKER''' (HOME)
 
|-
 
|-
| bgcolor="#BCD2EE"  align="center" | Title: Local integrals of triple product ''L''-function and subconvexity bound
+
| bgcolor="#BCD2EE"  align="center" | TITLE
 
|-
 
|-
 
| bgcolor="#BCD2EE"  |   
 
| bgcolor="#BCD2EE"  |   
Abstract: Venkatesh proposed a strategy to prove the subconvexity bound in the level aspect for triple product ''L''-function. With the integral representation of triple product ''L''-function, if one can get an upper bound for the global integral and a lower bound for the local integrals, then one can get an upper bound for the ''L''-function, which turns out to be a subconvexity bound. Such a subconvexity bound was obtained essentially for representations of square free level. I will talk about how to generalize this result to the case with higher ramifications as well as joint ramifications.
+
ABSTRACT
 
|}                                                                         
 
|}                                                                         
 
</center>
 
</center>
Line 103: Line 102:
 
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"
 
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"
 
|-
 
|-
| bgcolor="#F0A0A0" align="center" style="font-size:125%" | '''Kartik Prasanna''' (Michigan)
+
| bgcolor="#F0A0A0" align="center" style="font-size:125%" | '''SPEAKER''' (HOME)
 
|-
 
|-
| bgcolor="#BCD2EE"  align="center" | Title: Algebraic cycles and Rankin-Selberg L-functions
+
| bgcolor="#BCD2EE"  align="center" | TITLE
 
|-
 
|-
 
| bgcolor="#BCD2EE"  |   
 
| bgcolor="#BCD2EE"  |   
Abstract: I will give a survey of a circle of results relating L-functions and algebraic cycles, starting with the Gross-Zagier formula and its various generalizations. This will lead naturally to a certain case of the Bloch-Beilinson conjecture which is closely related to Gross-Zagier but where one does not have a construction of the expected cycles. Finally, I will hint at a plausible construction of cycles in this "missing" case, which is joint work with A. Ichino, and explain what one can likely prove about them.
+
ABSTRACT
 
|}                                                                         
 
|}                                                                         
 
</center>
 
</center>
Line 119: Line 118:
 
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"
 
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"
 
|-
 
|-
| bgcolor="#F0A0A0" align="center" style="font-size:125%" | '''Davide Reduzzi''' (Chicago)
+
| bgcolor="#F0A0A0" align="center" style="font-size:125%" | '''SPEAKER''' (HOME)
 
|-
 
|-
| bgcolor="#BCD2EE"  align="center" | Title: Galois representations and torsion in the coherent cohomology of
+
| bgcolor="#BCD2EE"  align="center" | TITLE
Hilbert modular varieties
 
 
|-
 
|-
 
| bgcolor="#BCD2EE"  |   
 
| bgcolor="#BCD2EE"  |   
Abstract: Let ''F'' be a totally real number field, ''p'' a prime number
+
ABSTRACT
(unramified in ''F''), and ''M'' the Hilbert modular variety for ''F'' of some level
 
prime to ''p'', and defined over a finite field of characteristic ''p''. I will
 
explain how exploiting the geometry of ''M'', and in particular the
 
stratification induced by the partial Hasse invariants, one can attach
 
Galois representations to Hecke eigen-classes occurring in the coherent
 
cohomology of ''M''. This is a joint work with Matthew Emerton and Liang Xiao.
 
 
|}                                                                         
 
|}                                                                         
 
</center>
 
</center>
Line 142: Line 134:
 
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"
 
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"
 
|-
 
|-
| bgcolor="#F0A0A0" align="center" style="font-size:125%" | '''Arul Shankar''' (Harvard)
+
| bgcolor="#F0A0A0" align="center" style="font-size:125%" | '''SPEAKER''' (HOME)
 
|-
 
|-
| bgcolor="#BCD2EE"  align="center" | Title: The average 5-Selmer rank of elliptic curves
+
| bgcolor="#BCD2EE"  align="center" | TITLE
 
|-
 
|-
 
| bgcolor="#BCD2EE"  |   
 
| bgcolor="#BCD2EE"  |   
Abstract:  We use geometry-of-numbers techniques to show that the average size of the 5-Selmer group of
+
ABSTRACT
elliptic curves is equal to 6. From this, we deduce an upper bound on the average rank of elliptic curves.
 
Then, by constructing families of elliptic curves with equidistributed root number we show that the average rank is
 
less than 1. This is joint work with Manjul Bhargava.
 
 
|}                                                                         
 
|}                                                                         
 
</center>
 
</center>
Line 160: Line 149:
 
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"
 
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"
 
|-
 
|-
| bgcolor="#F0A0A0" align="center" style="font-size:125%" | '''Melanie Matchett Wood''' (UW-Madison)
+
| bgcolor="#F0A0A0" align="center" style="font-size:125%" | '''SPEAKER''' (HOME)
 
|-
 
|-
| bgcolor="#BCD2EE"  align="center" | Title: Jacobians of Random Graphs and Cohen Lenstra heuristics
+
| bgcolor="#BCD2EE"  align="center" | TITLE
 
|-
 
|-
 
| bgcolor="#BCD2EE"  |   
 
| bgcolor="#BCD2EE"  |   
Abstract:  We will consider the question of the distribution of the Jacobians of random curves over finite fields.  Over a finite field, given a curve, we can associate to it the (finite) group of
+
ABSTRACT
degree 0 line bundles on the curve.  This is the function field analog of the class group of a number field.
 
We will discuss the relationship to the Cohen Lenstra heuristics for the distribution of class groups.  If the curve is reducible, a natural quotient of the Jacobian is the group of components, and we will focus on this aspect.  We are thus led to study Jacobians of random graphs, which go by many names (including the sandpile group and the critical group) as they have arisen in a wide variety of contexts.  We discuss new work proving a conjecture of Payne that Jacobians of random graphs satisfy a modified Cohen-Lenstra type heuristic.
 
 
 
 
|}                                                                         
 
|}                                                                         
 
</center>
 
</center>
 
 
<br>
 
<br>
  

Revision as of 13:03, 14 August 2014

Aug 28

SPEAKER (HOME)
TITLE

ABSTRACT


Sep 04

SPEAKER (HOME)
TITLE

ABSTRACT



Sep 11

SPEAKER (HOME)
TITLE

ABSTRACT



Sep 18

SPEAKER (HOME)
TITLE

ABSTRACT


Sep 25

SPEAKER (HOME)
TITLE

ABSTRACT


Oct 02

SPEAKER (HOME)
TITLE

ABSTRACT


Oct 09

SPEAKER (HOME)
TITLE

ABSTRACT


Oct 16

SPEAKER (HOME)
TITLE

ABSTRACT


Oct 23

SPEAKER (HOME)
TITLE

ABSTRACT


Oct 30

SPEAKER (HOME)
TITLE

ABSTRACT


Nov 06

SPEAKER (HOME)
TITLE

ABSTRACT


Nov 13

SPEAKER (HOME)
TITLE

ABSTRACT


Nov 20

SPEAKER (HOME)
TITLE

ABSTRACT


Nov 27

SPEAKER (HOME)
TITLE

ABSTRACT


Dec 04

SPEAKER (HOME)
TITLE

ABSTRACT


Dec 11

SPEAKER (HOME)
TITLE

ABSTRACT



Organizer contact information

Robert Harron

Sean Rostami


Return to the Number Theory Seminar Page

Return to the Algebra Group Page