Difference between revisions of "NTS/Abstracts"

From UW-Math Wiki
Jump to navigation Jump to search
Line 54: Line 54:
 
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"
 
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"
 
|-
 
|-
| bgcolor="#F0A0A0" align="center" style="font-size:125%" | '''SPEAKER'''
+
| bgcolor="#F0A0A0" align="center" style="font-size:125%" | '''Takehiko Yasuda'''
 
|-
 
|-
| bgcolor="#BCD2EE"  align="center" | TITLE
+
| bgcolor="#BCD2EE"  align="center" | ''Distributions of rational points and number fields, and height zeta functions''
 
|-
 
|-
 
| bgcolor="#BCD2EE"  |   
 
| bgcolor="#BCD2EE"  |   
ABSTRACT
+
In this talk, I will talk about my attempt to relate Malle's conjecture on the distribution of number fields with Batyrev and Tschinkel's generalization of Manin's conjecture on the distribution of rational points on singular Fano varieties. The main tool for relating these is the height zeta function.
 
|}                                                                         
 
|}                                                                         
 
</center>
 
</center>

Revision as of 13:08, 19 August 2014

Aug 28

SPEAKER
TITLE

ABSTRACT


Sep 04

SPEAKER
TITLE

ABSTRACT



Sep 11

SPEAKER
TITLE

ABSTRACT



Sep 18

Takehiko Yasuda
Distributions of rational points and number fields, and height zeta functions

In this talk, I will talk about my attempt to relate Malle's conjecture on the distribution of number fields with Batyrev and Tschinkel's generalization of Manin's conjecture on the distribution of rational points on singular Fano varieties. The main tool for relating these is the height zeta function.


Sep 25

SPEAKER
TITLE

ABSTRACT


Oct 02

Pham Huu Tiep
Nilpotent Hall and abelian Hall subgroups

To which extent can one generalize the Sylow theorems? One possible direction is to assume the existence of a nilpotent subgroup whose order and index are coprime. We will discuss recent joint work with various collaborators that gives a criterion to detect the existence of such subgroups in any finite group.


Oct 09

SPEAKER
TITLE

ABSTRACT


Oct 16

SPEAKER
TITLE

ABSTRACT


Oct 23

SPEAKER
TITLE

ABSTRACT


Oct 30

SPEAKER
TITLE

ABSTRACT


Nov 06

SPEAKER
TITLE

ABSTRACT


Nov 13

SPEAKER
TITLE

ABSTRACT


Nov 20

SPEAKER
TITLE

ABSTRACT


Nov 27

SPEAKER
TITLE

ABSTRACT


Dec 04

SPEAKER
TITLE

ABSTRACT


Dec 11

SPEAKER
TITLE

ABSTRACT



Organizer contact information

Sean Rostami (srostami@math.wisc.edu)


Return to the Number Theory Seminar Page

Return to the Algebra Group Page